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A B S T R A C T

This paper empirically validates (Constantinides and Ghosh’s, 2017) heterogeneous-agents
consumption-based asset pricing model for predicting expected returns in international equity
markets. Using the model’s implications, we proxy the unobservable state variable driving
income shocks with the principal component of consumption growth cumulants across agents.
We confirm that both the level and changes in this cross-sectional consumption risk serve as
pricing factors, emphasizing the importance of higher moments like skewness. The estimated
structural parameters obtained from the Euler equations are statistically significant and plausi-
ble, while the factor risk premium estimates align with theoretical expectations. Our approach
effectively explains the emerging versus developed premium, outperforming traditional methods
reliant on cross-sectional variance. Our findings, robust across different model specifications and
asset menus, highlight the imprecision of consumption-based factor risk premia estimates when
limited to developed markets, a limitation mitigated by including emerging markets. The model
demonstrates a 60% explanatory power, surpassing the global Fama–French model.

. Introduction

This paper explores the variation in expected returns across countries’ stock indices, building on the premise introduced
y Bekaert and Harvey (1995). We extend the heterogeneous-agents consumption-based asset pricing models1 (Constantinides
nd Duffie, 1996; Constantinides and Ghosh, 2017) to consider each agent as a country’s representative. These representatives
ace unique consumption shocks and navigate them by investing in international stock markets.2 While these models typically
ddress household consumption risks within a single country, our approach applies them internationally, given similarities between
ousehold-specific risks and national challenges. Just as households encounter specific income risks, countries deal with unique
roductivity shocks, trade imbalances, and sector downturns, affecting their consumption and overall economic wellbeing.

Our framework focuses on country stock indices as they provide a gateway to a country’s economy and major companies, offering
xposure and diversification. Motivated by the globalization of financial markets and the increasing ease of cross-border investments,
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1 Recent research has focused on the effects of heterogeneity in income and consumption shocks to explain financial market participation, estimate consumer
references, and price assets (see works like Brav et al., 2002; Vissing-Jorgensen, 2002; Malloy et al., 2009; Storesletten et al., 2004).

2 By holding a country-specific market portfolio, represented by its stock market index, there is an inherent risk linked to potential drops in that country’s
verall consumption growth.
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we explore whether actual country expected excess returns compensate for exposure to factors derived from a global consumption-
based asset pricing model with heterogeneous agents. Using international data on country stock index returns and consumption
growth rates, we examine the cross-sectional implications of the heterogeneous-agents model proposed by Constantinides and Ghosh
(2017).

The model assumes that country representative agents have identical recursive preferences (Kreps and Porteus, 1978; Epstein
nd Zin, 1989) and heterogeneity in their consumption growth rates is modeled as a Poisson process with stochastic intensity.
his stochastic intensity is the single-state variable of the model, which, by analogy, we refer to as cross-sectional consumption risk

throughout the article. In this incomplete market model compatible with imperfect risk-sharing and featuring multiple stochastic
discount factors (SDFs), i.e., one SDF per country representative agent, the average SDF derived by integrating out the idiosyncratic
shocks experienced by agents, is driven by a trio of variables: the aggregate consumption growth rate (𝛥𝑐𝑡), the level of the cross-
sectional consumption risk (𝑥𝑡), and changes in cross-sectional consumption risk (𝛥𝑥𝑡). This common SDF serves as the primary tool
in our asset pricing tests.

Theoretically, all cumulants of country consumption growth rates are linearly related to the unobserved cross-sectional
consumption risk, implying perfect correlations between these cumulants. However, actual correlations vary between 0.66 and 0.79.
Using Principal Component Analysis (PCA), we derive a deeper understanding of countries’ consumption growth rate diversities and
associated risks. The first principal component, weighing 83%, acts as a proxy for this consumption risk, encapsulating information
from variance, skewness, and kurtosis. Notably, this PCA-based proxy correlates more strongly with the cumulants (0.89 with
variance, −0.90 with skewness, and 0.94 with kurtosis) than pair-wise correlations, aligning better with the model’s theoretical
expectations than simply using the cross-sectional variance as in Sarkissian (2003) and Darrat et al. (2011). Given our proxy for
cross-sectional consumption risk, we compute the model’s common SDF and test its ability to price the cross-section of international
assets.

We begin our tests by estimating the model’s structural parameters using the generalized method of moments (GMM) based on
quilibrium moment conditions. We aim to gauge how the model’s nonlinear SDF prices our test assets and check if the derived
reference parameters match other asset pricing studies. Our primary asset menu includes 69 stock indices from various market
ypes (23 developed, 26 emerging, 16 frontier, and 4 standalone), primarily focusing on country-specific indices to avoid biases and
educe the diversifiable risk noise. This approach is more challenging than past research, which mainly targeted developed markets.
e also explore an alternative asset pool featuring Fama–French’s 25 developed portfolios sorted by size and momentum.
The GMM test supports the model at the 95% confidence level, and all parameter estimates are statistically significant with

conomically plausible values. The subjective discount factor range from 0.970 to 0.986, the relative risk aversion (RRA) from 1.95
o 6.50, and the elasticity of intertemporal substitution (EIS) from 1.15 to 2.86. Notably, RRA and EIS estimates exceed one, and
RA values surpass the inverse of EIS, aligning with past findings on the preference for early resolution of uncertainty, as seen

n Bansal et al. (2016). Our research distinctively achieves these insights by examining a heterogeneous-agents asset pricing model
n a global scale, emphasizing worldwide equities. The implied SDF time series captures both OECD and non-OECD economic cycles.

By utilizing the GMM, we build upon the growing literature on recursive preferences estimation as seen in works by Chen et al.
2013), Bansal et al. (2016), Meddahi and Tinang (2016), and Constantinides and Ghosh (2017). However, our approach identifies
he model’s state variable through the cross-sectional cumulants of country consumption growth rates and calculates the SDF for
sset pricing explicitly. In contrast, existing studies typically rely on U.S. aggregate consumption to filter out the latent state variable
or SDF computation or bypass the direct calculation of the SDF, leaning on the model’s implied unconditional asset price moments
or parameter estimation.

Next, we linearize the SDF as common in cross-sectional asset pricing and estimate the linear factor model using the two-pass
ross-sectional regressions of Fama and MacBeth (1973). The reduced-form factor risk premiums are statistically significant, stable,
nd theoretically consistent. In the cross-section, a one-standard deviation drop in the beta of cross-sectional consumption risk
orresponds to a 1.01% increase in risk premium, while a similar decrease in the beta for its changes results in a 0.41% rise.
otably, the latter premium is relevant only within Epstein–Zin’s preference framework. Considering the average risk premium
f 2.40% across the 69 MSCI indices, with quartile values of 1.50%, 2.24%, and 3.09%, our results have significant economic
mplications.

Our approach of employing international test assets in a global heterogeneous-agents consumption-based asset pricing model
eaturing a single state variable that influences cross-sectional consumption risk mirrors previous research such as Sarkissian (2003)
nd Darrat et al. (2011). Both papers build on Constantinides and Duffie (1996) where cross-sectional consumption risk is the
ross-sectional variance of country consumption growth rates, all cross-sectional higher-order cumulants being equal to zero under
he assumption of conditional normality of agents’ idiosyncratic shocks. However, our study offers a distinctive perspective by
onsidering Epstein–Zin’s recursive utility and conditional non-normality of agents’ idiosyncratic shocks, which provides valuable
nsights. Both result in the pricing of changes in cross-sectional consumption risk and integrating information from cross-sectional
igher-order moments, moving beyond the traditional reliance on cross-sectional variance. We find these two novelties statistically
nd economically significant in our empirical analyses.

Theoretically, the cross-sectional consumption risk is a positive process. However, as our PCA-based proxy does not empirically
uarantee positivity, we explore an alternative that uses model implications to back out cross-sectional consumption risk as
roportional to cross-sectional variance up to a constant coefficient that depends on model structural parameters. This is particularly
rucial in GMM estimation, where structural parameters, including those governing the positive cross-sectional consumption risk
rocess, are estimated. When estimating the GMM based on the nonlinear SDF, both proxies of cross-sectional consumption risk
2

eliver comparable pricing errors. This finding underscores the importance and ability of the nonlinear SDF to exploit interactions
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between aggregate consumption growth and cross-sectional variance to potentially capture the richness of information hidden in
cross-sectional higher-order cumulants.

In contrast, when linearizing the SDF, the capacity to combine aggregate consumption growth and cross-sectional variance in a
ay that extracts information from higher-order moments vanishes. Using the PCA-based proxy of cross-sectional consumption

isk incorporates the information content of the cross-sectional higher-order moments. Alternatively, we explore ad-hoc linear
actor model specifications supplementing the cross-sectional variance factor with other cross-sectional cumulants. This allows us
o examine empirically whether information from these cumulants, unaccounted for by cross-sectional variance, holds value in
ricing international equities. Although this latter approach does not directly derive from the model, it aligns with its underlying
ssumptions. Our benchmark linear factor model with the PCA-based proxy of cross-sectional consumption risk performs better
han comparable specifications that build on the work of Constantinides and Duffie (1996) by using cross-sectional variance and
as previously been considered for pricing international equity (Darrat et al., 2011) and foreign exchange markets (Sarkissian, 2003).

To illustrate the performance and economic significance of the information content of cross-sectional higher-order moments
nd changes in cross-sectional consumption risk, which are the main innovations in our setting, we decompose the risk premium
ssociated with long positions in emerging markets versus short positions in developed markets, a consistent average excess
eturn difference of 0.98% quarterly, reinforcing the prevalent understanding that emerging markets investments bear higher
isks. Our deep dive into specific risk factors revealed a consistent positive contribution to the long-short premium from cross-
ectional skewness and changes in cross-sectional variance. In contrast, cross-sectional variance is not a driver of the Emerging
ersus Developed risk premium in all model specifications. Intriguingly, the PCA-based proxy of cross-sectional consumption risk
emonstrates empirical superiority in explaining international equities, evidenced by its positive and substantial contribution
o the long-short premium, contrasting with the negligible or negative contributions of cross-sectional variance. The significant
erformance of the PCA-based proxy relative to the traditional cross-sectional variance approach in explaining the observed premium
nderscores its empirical advantage and our innovative contribution to the literature.

In examining whether cross-sectional moments of country consumption growth rates are pricing factors in international stock
ndices, we have updated our econometric methods based on recent advancements in linear asset pricing tests. We aim to eliminate
purious factors and ensure reliable statistical inference for factor risk premia. As Kleibergen (2009) and Kleibergen and Zhan (2015)
ave pointed out, rank deficiencies in the initial stage of the Fama and MacBeth (1973) regressions lead to weaker identifications in
he subsequent stage. This aligns with recent empirical findings, like those from Ang et al. (2020) and Gagliardini et al. (2016), which
tress the need for a more expansive cross-section to achieve precise factor risk premia estimates. Results from our 23 developed
arket MSCI indices indicate that the risk premium tied to cross-sectional consumption risk is not statistically significant, even

t the 10% level. However, when we broadened our asset menu to include a combination of developed, emerging, frontier, and
tandalone MSCI indices, we observed increased variability in risk exposures and expected returns. This comprehensive asset menu
llows for enhanced identification and precision in estimating factor risk premia, as emphasized in the Fama–MacBeth regressions.
s Giglio et al. (2021) highlighted, identifying a factor risk premium largely depends on the asset menu’s scope. Our expanded menu
emonstrates that a broader international asset selection offers more precise identification and estimation of risk premia associated
ith cross-sectional higher-order moments of consumption growth rates.

The remainder of the paper is organized as follows. Section 2 provides an overview of the theoretical framework establishing the
ink between asset risk premia and the cross-sectional higher-order moments of heterogeneous-agents consumption growth rates.
ection 3 presents the empirical approach, together with the data and their descriptive statistics. We also describe the different
conometric methodologies used in the estimation (e.g., generalized methods of moments for the structural parameters, and cross-
ectional regressions for factor risk premiums), and present the estimation results. Section 4 concludes. An external appendix
vailable from the authors’ web pages includes additional analyses with the associated technical derivations, tables, and figures.

. Theoretical background

Our framework is based on the Constantinides and Ghosh (2017) model and assumes that the economy is global. It features
n infinite number of country representative consumers, each indexed by ‘‘𝑖’’, and whose sum is normalized to one. The model’s

representation of infinitely many small consumers, in the international context, can be seen as a stylized representation of the
global economic landscape. Even though we have a finite number of countries, the variations in their economic sizes, stages of
development, and openness to international markets mean that their influence on global consumption dynamics varies widely. This
variation can be analogously seen as the consumption disparity among infinitely many households. While the scale and specifics
differ, the core idea remains, i.e., diverse entities, whether households or countries, interact in a shared economic environment,
with idiosyncratic risks influencing their consumption trajectories. By extending the Constantinides and Ghosh (2017) framework
to countries, we offer a novel lens through which we can view and understand international consumption dynamics and risk-sharing
mechanisms.

The representative consumer in each country receives a labor income and can invest in international financial markets, which
the asset menu consists of country stock indices or international portfolios. The proceeds from labor income and financial assets are
then utilized to purchase the single numeraire good for consumption. Following Constantinides and Duffie (1996), the consumer
cannot insure against idiosyncratic country-specific shocks through the global market, making the market incomplete. Therefore,
there are no traded state-contingent goods available to hedge against the potential decline in consumption in country 𝑖.
3
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The country representative consumers have identical recursive utility of Epstein and Zin (1989) whose one-period Stochastic
iscount Factor (SDF) for agent 𝑖 is given by:

𝑀𝑖,𝑡+1 = exp
(

𝜃 log 𝛿 − 𝜃
𝜓
𝛥𝑐𝑖,𝑡+1 + (𝜃 − 1) 𝑟𝑖,𝑐,𝑡+1

)

, (1)

here 𝛥𝑐𝑖,𝑡+1 = 𝑐𝑖,𝑡+1 − 𝑐𝑖,𝑡 with 𝑐𝑖,𝑡 = ln𝐶𝑖,𝑡, 𝐶𝑖,𝑡 is the country 𝑖 representative agent’s consumption level, 𝛿 is the time-preference
arameter, 𝛾 is the relative risk aversion parameter, 𝜓 is the elasticity of intertemporal substitution, 𝜃 =

1 − 𝛾
1 − 1∕𝜓

, and 𝑟𝑖,𝑐,𝑡+1 is the
log-return on the claim to country 𝑖 representative agent’s consumption.

The world aggregate consumption growth is unpredictable, homoscedastic, and evolves as follows

𝛥𝑐𝑡+1 = 𝜇𝑐 + 𝜎𝑐𝜖𝑡+1, (2)

where 𝛥𝑐𝑡+1 = 𝑐𝑡+1−𝑐𝑡 with 𝑐𝑡 = ln𝐶𝑡, 𝐶𝑡 is the world aggregate consumption level, 𝜖𝑡+1 is an independent and identically distributed
(i.i.d.) standard normal process, and 𝜇𝑐 and 𝜎𝑐 are the mean and the volatility of aggregate consumption growth rate, respectively.

The model does not assume a complete absence of risk sharing across countries. Instead, it is compatible with imperfect risk-
sharing. In this setting, agents cannot fully insure against all idiosyncratic risks, which leads to country-specific consumption growth
rates that may not perfectly correlate with global consumption growth. This captures the empirical regularities often observed
where countries cannot fully diversify away from country-specific risks despite their integration into global financial markets. Under
the assumptions of Constantinides and Ghosh (2017), in equilibrium, agent 𝑖’s consumption level 𝐶𝑖,𝑡, is a share ℎ𝑖,𝑡 of aggregate
consumption, i.e.,

𝐶𝑖,𝑡 = ℎ𝑖,𝑡𝐶𝑡 where ℎ𝑖,𝑡 = ℎ𝑖,𝑡−1 exp

(

(

𝜂𝑖,𝑡𝜎
√

𝑗𝑖,𝑡 − 𝜎2
𝑗𝑖,𝑡
2

)

+

(

𝜂̃𝑖,𝑡𝜎̃
√

𝑗𝑖,𝑡 − 𝜎̃2
𝑗𝑖,𝑡
2

))

. (3)

The processes 𝜂𝑖,𝑡 and 𝜂̃𝑖,𝑡 are i.i.d. standard normal and capture the idiosyncratic shock occurring in country 𝑖, and 𝑗𝑖,𝑡 and 𝑗𝑖,𝑡 are
conditionally distributed Poisson processes driving the occurrence of the representative consumer 𝑖’s idiosyncratic shocks at time 𝑡.
Following Constantinides and Ghosh (2017), the processes 𝑗𝑖,𝑡 and 𝑗𝑖,𝑡 can be viewed as time-𝑡 random variables that characterize
the agents’ cross-sectional heterogeneity of consumption growth.

In the international context, this framework could provide a fresh perspective on the well-documented puzzles related to the
lack of risk sharing across countries. While many standard international macroeconomics and finance models predict higher levels
of risk sharing than what is empirically observed, the current model might offer insights into the deviations from these predictions by
assuming imperfect risk sharing. The nuances of this imperfect risk-sharing can help bridge the gap between theoretical predictions
and the empirical realities of international consumption and investment patterns. This latter point, however, goes beyond the scope
of the current article.

The Poisson distribution followed by 𝑗𝑖,𝑡 is governed by a common stochastic intensity process 𝜔𝑡 that drives the representative
consumer 𝑖’s idiosyncratic income shocks:

∀𝑖, prob
(

𝑗𝑖,𝑡 = 𝑛 ∣ 𝑡
)

= exp
(

−𝜔𝑡
) 𝜔𝑛𝑡
𝑛!
, 𝑛 = 0, 1, 2,… (4)

where 𝑡 denotes the information set at time 𝑡. Therefore, the process 𝜔𝑡 can be viewed as a global business cycle variable. It follows
that the term 𝜂𝑖,𝑡𝜎

√

𝑗𝑖,𝑡 − 𝜎2
𝑗𝑖,𝑡
2

in Eq. (3) captures country 𝑖’s idiosyncratic income shocks that are related to the global business
cycle. For example, financial crises in one region can rapidly spread globally, such as the 2008 crisis in the United States, leading to
decreased revenues worldwide. More recently, the COVID-19 pandemic has had considerable economic effects worldwide, leading
to decreased activity and employment in many countries.

Instead, the intensity of the Poisson distribution followed by 𝑗𝑖,𝑡 is a constant 𝜔̃ for all representative consumers:

∀𝑖, prob
(

𝑗𝑖,𝑡 = 𝑛 ∣ 𝑡
)

= prob
(

𝑗𝑖,𝑡 = 𝑛
)

= exp (−𝜔̃) 𝜔̃
𝑛

𝑛!
, 𝑛 = 0, 1, 2,… (5)

It follows that the term 𝜂̃𝑖,𝑡𝜎̃
√

𝑗𝑖,𝑡 − 𝜎̃2
𝑗𝑖,𝑡
2

in Eq. (3) captures country 𝑖’s idiosyncratic income shocks that are unrelated to the global
business cycle. For example, natural disasters, political instability, and public health emergencies can significantly affect a country’s
income.

To ease the computational exposure, Constantinides and Ghosh (2017) define the scaled state variable
𝑥𝑡 ≡

(

exp
(

𝛾(𝛾 − 1)𝜎2

2

)

− 1
)

𝜔𝑡 and assume that 𝑥𝑡 follows an auto-regressive gamma process of order 1, ARG(1), as in Gourieroux
nd Jasiak (2006). Formally, we have:

𝑥𝑡+1 = 𝜈𝜉 + 𝜌𝑥𝑡 + 𝜀𝑥,𝑡+1, (6)

here 𝜈 > 0, 𝜉 > 0, 𝜌 > 0, and 𝜀𝑥,𝑡+1 is a martingale difference sequence. The conditional mean and variance are given by
[

𝑥𝑡+1 ∣ 𝑥𝑡
]

= 𝜈𝜉 + 𝜌𝑥𝑡 and var
[

𝑥𝑡+1 ∣ 𝑥𝑡
]

= 𝜈𝜉2 + 2𝜌𝜉𝑥𝑡, respectively. Likewise, the unconditional mean, variance and first-order
utocovariance of 𝑥𝑡 are given by:

𝑚𝑥 ≡ E
[

𝑥𝑡
]

=
𝜈𝜉

, 𝑣𝑥 ≡ var
[

𝑥𝑡
]

=
𝜈𝜉2

and ac1
[

𝑥𝑡
]

=
𝜌𝜈𝜉2

. (7)
4

1 − 𝜌 (1 − 𝜌)2 (1 − 𝜌)2
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As suggested by Eq. (1), there are multiple SDFs corresponding to each agent in the current incomplete market setting, aligning
ith the emerging view that different investors possess different SDFs for pricing assets. The difference, however, is that in

he current model, all agents face the same asset menu, indicating a lack of market segmentation from the asset accessibility
tandpoint. Constantinides and Ghosh (2017) further show from the above consumption dynamics and preferences that, in
quilibrium, each agent’s valuation of any given security of the available asset menu is the same. Given this multitude of individual
DFs, they derive the average SDF by integrating out the idiosyncratic shocks experienced by agents and obtain the following:

𝑀𝑡+1 = E
[

𝑀𝑖,𝑡+1|𝑡+1
]

= exp
(

𝑏0 − 𝑏1𝛥𝑐𝑡+1 − 𝑏2𝑥𝑡+1 − 𝑏3𝛥𝑥𝑡+1
)

, (8)

𝑏0 = 𝜃 log 𝛿 + (𝜃 − 1)
(

𝑞0 −
(

1 − 𝑞1
)

𝐴0
)

+
(

exp
(

𝛾(𝛾 + 1)𝜎̃2

2

)

− 1
)

𝜔̃

𝑏1 = 𝛾 𝑏2 = −
exp

(

𝛾(𝛾 + 1)𝜎2

2

)

− 1

exp
(

𝛾(𝛾 − 1)𝜎2

2

)

− 1
+
(

1 − 𝑞1
)

(𝜃 − 1)𝐴1 𝑏3 = − (𝜃 − 1)𝐴1

(9)

here 𝑞0 and 𝑞1 are respectively the drift and slope coefficients of the Campbell and Shiller (1988) log-linear approximation of
he return to each agent’s individual consumption claim, while 𝐴0 and 𝐴1 are respectively the drift and slope coefficients of the
ach agent’s individual log wealth-to-consumption ratio as a linear function of the state variable 𝑥𝑡.3 The average or common SDF
n Eq. (8) serves as the primary tool in our asset pricing tests.

Eq. (8) shows that the equilibrium SDF depends on three risk factors: the world aggregate consumption growth, 𝛥𝑐𝑡+1, the cross-
ectional consumption risk level 𝑥𝑡+1 and the cross-sectional consumption risk changes, 𝛥𝑥𝑡+1. The price of aggregate consumption
rowth risk, 𝛾, is positive. The price of cross-sectional consumption risk level, 𝑏2, is negative once 𝛾 > 1 as commonly agreed in the

consumption-based asset pricing literature (see, for example, Tauchen, 2011). This follows from the fact that 𝑞1 ≈ 1. Likewise, the
risk price associated with the cross-sectional consumption risk changes (1 − 𝜃)𝐴1 is nonpositive in particular if 𝐴1 < 0 and 𝜃 ≤ 1.

otice that 𝐴1 is negative because asset markets dislike uncertainty (see, for example, Bansal et al., 2005). Also, assuming 𝛾 > 1 so
that the process 𝑥𝑡 is well-defined, the condition 𝜃 ≤ 1 may follow from 𝜓 > 1 and 𝛾 ≥ 1

𝜓
, as commonly argued in the asset pricing

literature with recursive utility (see for example Bansal and Yaron, 2004). The agent’s preference for early resolution of uncertainty
in the recursive utility model is also equivalent to 𝛾 > 1

𝜓
(see Epstein and Zin, 1989, henceforth, EZ). If 𝛾 = 1

𝜓
, then it leads

to the constant relative risk aversion (CRRA) model. In this case we have 𝜃 = 1, i.e., changes in the cross-sectional consumption
isk are not priced, and the equilibrium SDF depends only on two risk factors: world aggregate consumption growth 𝛥𝑐𝑡+1 and the

cross-sectional consumption risk level, 𝑥𝑡+1. A decrease in world consumption growth increases the SDF, whereas cross-sectional
consumption risk level and changes have positive effects on the SDF.

Notice from equation 𝐶𝑖,𝑡 = ℎ𝑖,𝑡𝐶𝑡 that the growth rate of ℎ𝑖,𝑡 is the difference between the country individual consumption
growth rate and the world aggregate consumption growth rate, i.e., by definition, the country relative consumption growth rate.
The pricing kernel (8) is not fully observable as it depends on the unobservable cross-sectional consumption risk 𝑥𝑡. However, as
Eqs. (A.2)–(A.5) of the internal appendix show, the cross-sectional conditional cumulants of relative consumption growth across
countries are linear functions of the cross-sectional consumption risk. Therefore, we can use the cumulants computed from the data
to back out an empirical proxy for the cross-sectional consumption risk. In the subsequent empirical analysis, we use the principal
component of the cross-sectional cumulants of country consumption growth rates to proxy the cross-sectional consumption risk.
As robustness checks, we also consider the cross-sectional moments of country consumption growth rates directly as linear pricing
factors in explaining the cross-sectional variation in country expected returns.

3. Empirical analysis

This section tests the consistency of the heterogeneous-agents consumption-based asset pricing model on international consump-
tion and security data. Section 3.1 presents the data sample and summary statistics. Section 3.2 shows the estimation of the model’s
structural parameters. In Section 3.3, we linearize the pricing kernel and present the linear factor models’ estimations.

3.1. Data and descriptive statistics

Consumption, population, and asset price data for the different countries are sourced from DataStream. Real consumption data
are private final consumption expenditures (PFCE) in constant price and asset price data are MSCI stock market indexes denominated
in U.S. dollar.4 The indexes are value-weighted and adjusted for dividend reinvestment. These data are available for 69 countries:5

3 These coefficients are obtained simultaneously by solving a non-linear system and a fixed point problem that determines the average wealth-consumption
atio, given in the appendix.

4 We use the MSCI return index denominated in U.S. dollar instead of local currency. By doing so, we can easily compare foreign assets without worrying
bout the exchange rates.

5 We drop some countries from the sample either because they had a negative risk premium on average (e.g., Bulgaria, Jordan, Serbia, and Ukraine), or
5

aced a hyperinflation episode (e.g., Zimbabwe).
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Table 1
List of countries and acronyms.

Country Acronym Country Acronym

Panel A: Developed Markets

Australia AU Israel IS
Austria OE Netherlands NL
Canada CN Norway NW
Belgium BG New Zealand NZ
France FR Portugal PT
Germany BD United States US
Denmark DK United Kingdom UK
Finland FN Switzerland SW
Hong Kong HK Singapore SP
Italy IT Spain ES
Japan JP Sweden SD
Ireland IR

Panel B: Emerging Markets

Argentina AG Malaysia MY
Brazil BR Peru PE
Chile CL Russian Federation RS
China CH Poland PO
Greece GR Qatar QT
India IN Philippines PH
Colombia CB Saudi Arabia SI
Hungary HN Taiwan TW
Indonesia ID Thailand TH
Egypt EY Turkey TK
Czech Republic CZ United Arab Emirates UA
Mexico MX South Korea KO
Czech Republic CZ
Kuwait KW

Panel C: Frontier Markets

Bangladesh BN Oman OM
Croatia CT Estonia EO
Ghana GH Pakistan PK
Kenya KN Romania RM
Kazakhstan KZ Slovenia SJ
Lithuania LN Tunisia TS
Mauritius MU Sri Lanka LK
Morocco MC Vietnam VM

Panel D: Stand-alone Markets

Bosnia Herzegovina BH Palestine PL
Jamaica JA Trinidad&Tobago TT

The table displays the list of countries included in our empirical analysis with their acronyms and classification as either
developed, emerging, frontier, or stand-alone market. In bold are the 24 countries whose consumption growth rates are used to
compute the factors in our main analysis.

23 developed, 26 emerging, 16 frontier, and 4 standalone markets according to the MSCI (2021) classification. The data are quarterly
and cover the period 1970Q1-2021Q1. Table 1 displays the list of countries that we consider in our empirical analysis along with
their acronyms and MSCI classifications. A second asset menu considered for robustness checks in our empirical analyses consists
of the Fama–French 25 developed portfolios formed on size and momentum. All asset excess returns are computed by subtracting
the U.S. 1-month T-bill rate from the index or portfolio returns. Portfolio returns and T-bill rate data are downloadable from the
Kenneth French data library.6

We compute each country’s real per capita consumption growth rate by subtracting its population growth rate from its aggregate
real consumption growth rate.7 To compute the cross-sectional cumulants of the country per capita real consumption growth rates
used in our asset pricing tests, we consider a balanced panel of consumption data from 24 countries, including 21 developed and three
emerging. These countries’ names and acronyms are highlighted in boldface in Table 1. Data for these countries are available longer
and deemed less noisy. The cross-sectional cumulants are weighted using the country’s private final consumption expenditures based
on purchasing power parity (henceforth, PPP-weighted) or equal-weighted for robustness checks. The observations span the period

6 Available online at https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
7 Table A1 of the external appendix offers descriptive statistics for consumption growth by country, while Tables A2 and A3 provide details on the excess

eturns for individual countries and the 25 Fama–French portfolios, respectively.
6

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Table 2
Summary statistics: Mean, Dispersion, Skewness, Kurtosis, and PC1𝑡.

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max Ac1

A. Cross-sectional moments (equally weighted)

aggcg 241 1.990 1.980 −15.873 1.241 3.031 5.492 0.776
vargcg 241 7.525 5.552 0.541 4.014 8.879 30.916 0.720
skewcg 241 0.033 1.141 −3.512 −0.430 0.608 3.518 0.627
kurtcg 241 4.743 2.953 1.746 2.880 5.606 15.950 0.558

B. Cross-sectional moments

aggcg 241 2.076 1.934 −14.171 1.306 3.264 5.919 0.803
vargcg 241 4.684 4.729 0.286 2.161 5.443 43.720 0.722
skewcg 241 0.078 1.622 −4.573 −0.885 1.122 6.255 0.648
kurtcg 241 4.644 6.763 −1.503 0.568 5.934 57.055 0.617

C. Cross-sectional cumulants

aggcg 241 2.076 1.934 −14.171 1.306 3.264 5.919 0.803
vargcg 241 4.684 4.729 0.286 2.161 5.443 43.720 0.722
skewcg 241 −5.267 53.574 −633.319 −4.675 7.212 99.823 0.541
kurtcg 241 197.950 647.786 −108.312 2.422 78.203 8,017.225 0.529

D. First principal component of cross-sectional cumulants

PC1 241 0.000 1.000 −0.484 −0.346 −0.062 11.759 0.609
𝛥PC1 240 0.003 0.879 −8.249 −0.083 0.071 6.256 −0.025

The table presents the summary statistics (mean, standard deviation, minimum, maximum, 25% and 75% percentiles, and first-order
autocorrelation) of the cross-sectional moments of the real per capita growth rate (in percentage) of the quarterly private final consumption
expenditure and the proxy of cross-sectional consumption risk. Panel A presents the equally weighted cross-sectional moments and Panel B
presents the similar moments where the weights are the proportion of the country consumption based on purchasing power parity (PPP) to
world consumption. Panel C presents the weighted cross-sectional cumulants where the weight is the share of country consumption based on
purchasing power parity (PPP) to world consumption. Panel D presents the proxy of cross-sectional consumption risk obtained as the first
principal component of the cross-sectional cumulants of country consumption growth. We used a balanced panel data of 24 developed and
emerging countries over the period from 1961Q1 to 2021Q1.

1961Q1-2021Q1. World aggregate real per capita consumption growth rate is measured by the cross-sectional mean of country
aggregate real per capita consumption growth rates.

The time-series descriptive statistics of the cross-sectional moments of countries’ consumption growth rates are presented in
he first two panels of Table 2. The equal-weighted cross-sectional mean has a sample average and standard deviation of 1.99%
nd 1.98%, respectively, while similar statistics for the PPP-weighted cross-sectional mean are 2.08% and 1.93%, respectively. The
qual-weighted and PPP-weighted cross-sectional variance sample averages are 7.53 and 4.68 percent-squared, and their standard
eviations are 5.55 and 4.73, respectively. The cross-sectional skewness is positive on average and close to zero. However, its
ime-series evolution as displayed in Panel A of Fig. 1 clearly evidences periods of negatively-skewed cross-sectional distribution of
ountries’ consumption growth rates that often coincide with economic recessions, and episodes of positively-skewed cross-sectional
istribution. Finally, cross-sectional excess kurtosis is, on average, positive (i.e., the kurtosis is larger than 3) and fluctuates through
ime. As a result, the country’s consumption growth distribution often exhibits a thinner tail than the normal distribution.

The last two panels of Table 2 present the time-series descriptive statistics of the cross-sectional cumulants of countries’
onsumption growth rates, and the level (PC1𝑡) and changes (𝛥PC1𝑡) of their (standardized) first principal component. The first
rincipal component captures about 83% of the variability in the second to fourth cross-sectional cumulants of consumption growth.
ts correlations with the second, third, and fourth-order cumulants are 0.89, −0.90, and 0.94, respectively. Interestingly, these
orrelations are significantly higher than the pair-wise correlations between the cross-sectional cumulants, therefore aligning more
losely with the model’s theoretical predictions.

Panel A of Fig. 1 plots the time-series of the standardized cross-sectional moments, and the shaded bars represent the OECD
nd non-OECD country recession periods. Data on these recession indicators are available from the Federal Reserve Economic Data
FRED) services. This figure highlights some interesting patterns. The aggregate consumption growth factor displays troughs around
ecessions, especially the first and second oil crises in 1973–1974 and 1979–1980, the 1990 oil price shock, the 2008 financial
risis, and recently during the Covid-19 pandemic. Second, the cross-sectional variance factor displays some peaks around the same
ecession periods except for the 2008 financial crisis. However, we observe a peak in the cross-sectional variance factor following
he 1997 Asian financial crisis while the cross-sectional mean factor is barely negatively affected.

Finally, cross-sectional skewness differs from aggregate consumption growth, slightly peaking during the oil crises and troughing
n later recessions. Similarly, the kurtosis factor’s path differs from the variance factor; it barely responded to the 1990 oil price
hock yet peaked during the 2001–2002 period, marked by the September 11 attacks, while the variance factor remained low. These
ross-sectional moments do not consistently synchronize and can reflect diverse global economic events. The principal component
aptures these different facets of cross-sectional consumption risk, and assets more susceptible to these risks offer higher expected
7
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Fig. 1. Cross-sectional moments of consumption and first principal component.
Panel A shows the time series evolution of the cross-sectional (standardized) moments (mean, variance, skewness and kurtosis) of international consumption
growth. Panel B shows the evolution of the standardized first principal component of the consumption growth cross-sectional cumulants and its changes. The
cross-sectional moments and cumulants are weighted by country consumption expenditures based on purchase power parity measured in dollars. Panel (A)
uses an balanced panel of 24 developed and emerging economies. The variables on the figure have been standardized. The gray bars represent the OECD and
Non-OECD countries recession periods.

returns. The moments of countries’ consumption growth rates effectively represent the global business cycle and can elucidate
international asset pricing, our article’s core focus. Panel B of Fig. 1 illustrates the evolution of the consumption growth’s first
principal component and cross-sectional variance, both standardized. Their close movement is verified by their strong correlation
in Table 3.
8
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Table 3
Correlation matrix: Cross-sectional cumulants and PC1𝑡.

PC1 aggcg vargcg skewcg

aggcg −0.23
vargcg 0.89 −0.28
skewcg −0.90 0.22 −0.66
kurtcg 0.94 −0.13 0.78 −0.79

This table presents the correlations between the Cross-sectional weighted cumu-
lants and the principal component PC1𝑡. We used a balanced panel data of 24
developed and emerging countries over the period from 1961Q1 to 2021Q1.

3.2. Estimation of the structural parameters

This subsection describes the estimation procedure for the model structural parameters and presents the results. We employ the
Generalized Method of Moments (GMM) to estimate the asset pricing model described in Section 2, rooted in the conventional Euler
equations. These equations posit that the expected product of the stochastic discount factor (SDF) and the gross return of an asset
should equate to one. Notably, our model characterizes the SDF as being exponential affine in the factors. Within this structure, the
drift of this affine function is contingent on several parameters, yet not all of these exert a substantial influence on the factor risk
prices. Some parameters have only a marginal impact. In light of this observation, it stands to reason that parameter identification
might be enhanced by judiciously restricting certain parameters that primarily influence the drift, e.g., 𝜔̃. Specifically, setting 𝜔̃ = 0
could foster a more parsimonious and identifiable model, enhancing the validity and interpretability of our subsequent findings.
Under this restriction, the full model has nine parameters which are collected in the vector 𝛩 =

(

𝛿, 𝛾, 𝜓, 𝜇𝑐 , 𝜎𝑐 , 𝜈, 𝜉, 𝜌, 𝜎
)

.
The vector of moment conditions denoted by 𝑒𝑡 (𝛩) combines the model’s pricing errors (i.e., the Euler equation errors) with

the differences between sample and theoretical moments of the factors. We also add the unconditional mean and variance of the
aggregate consumption growth rate. Thus, our model is overidentified, enabling us to test overidentifying restrictions.

Our GMM uses a diagonal weighting matrix with a unitary weight on the Euler moments and a more considerable weight on the
remaining moments related to the dynamics of the state variables.8

3.2.1. Estimation of the structural parameters using PCA
The common SDF derived in Eqs. (8) depends on the unobserved cross-sectional consumption risk 𝑥𝑡. However, as shown in

Eqs. (A.2)–(A.5) of the internal appendix, the cross-sectional cumulants of country consumption growth rates are linear functions of
the rescaled cross-sectional consumption risk. Therefore, we apply a principal component analysis to these cumulants and use the
first principal component as a proxy of the unobserved state variable. Our observable proxy for cross-sectional consumption risk 𝑥𝑡
is computed as follows:

𝑥̂𝑡 = 𝑚𝑥 +
√

𝑣𝑥 ⋅ PC1𝑡 (10)

where PC1𝑡 is the standardized first principal component of the cross-sectional cumulants of country consumption growth rates,
𝑚𝑥 and 𝑣𝑥 denote the theoretical unconditional mean and variance, respectively, of the unobserved cross-sectional consumption
risk 𝑥𝑡 as given in Eq. (7). This approach forces the empirical proxy to match the theoretical mean and variance of 𝑥𝑡. However,
the positivity of cross-sectional consumption risk process is not empirically guaranteed. We subsequently propose an alternative
estimation strategy to overcome this issue.

For the GMM estimation, the empirical proxy 𝑥̂𝑡 is substituted in the expression of the SDF in Eq. (8) to get an observable SDF 𝑀̂𝑡
given the model parameters 𝛩. We then form the moment conditions, putting together the model pricing errors with the centered
unconditional moments of the aggregate consumption growth and cross-sectional consumption risk. Formally, we have:

E
[

𝑒𝑡 (𝛩)
]

= 0, with 𝑒𝑡 (𝛩) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 − 𝑀̂𝑡

[

𝑅′
𝑠,𝑡 𝑅

′
𝑓,𝑡

]′

𝜇𝑐 − âggcg𝑡
𝜎2𝑐 −

(

âggcg2𝑡 − âggcg
2
)

𝜌 − PC1𝑡 ⋅ PC1𝑡−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (11)

where 𝑅𝑠 denotes the vector of test assets used to estimate 𝛩, 𝑅𝑓 is the return of the risk-free asset as measured by the U.S. T-bill,
and âggcg𝑡 denotes our estimate of the global aggregate consumption growth in the data. In total, there are 𝐾+3 moment conditions,
where 𝐾 is the number of risky securities considered in our asset menu plus the risk free asset. We consider three different estimation
scenarios. First, the asset menu is composed by developed countries’ MSCI indexes with the longest available MSCI index series;
there are 18 of them, the same considered by Darrat et al. (2011), and the number of moment conditions with this scenario is 22.
Second, the asset menu contains the MSCI indexes of all 69 countries; therefore, the number of moment conditions is 73. Third, the
asset menu is made by the Fama–French 25 developed market portfolios sorted on size and momentum, which yields 29 moment
conditions.

8 The goal is to prioritize the matching of these other moments, before evaluating the asset pricing ability of the model (for similar approaches, see also Parker
9

nd Julliard, 2005, Yogo, 2006, and Tédongap, 2015, among others).
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Table 4
GMM: Principal component as proxy for cross-sectional consumption risk.

A. Estimation with the Developed market MSCI indices.

Par. 𝛿 𝛾 𝜓 𝜇𝑐 𝜎𝑐
Est. 0.986 6.496 1.152 1.684e−02 1.853e−02
95% CI . (0.986, 0.987) (6.371, 6.620) (1.063, 1.240) (1.683e−02, 1.684e−02) (1.830e−02, 1.876e−02)

Par. 𝜈 𝜉 𝜌 𝜎 MAE

Est. 1.855e−03 6.590e−02 0.609 0.345 0.49
95% CI (1.829e−03, 1.882e−03) (6.585e−02, 6.595e−02) (0.608, 0.609) (0.345, 0.346)

B. Estimation with all market MSCI indices.

Par. 𝛿 𝛾 𝜓 𝜇𝑐 𝜎𝑐
Est. 0.970 1.948 2.859 1.684e−2 1.849e−2
95% CI. (0.969, 0.970) (1.932, 1.965) (2.636, 3.083) (1.683e−2, 1.684e−2) (1.834e−2, 1.864e−2)

Par. 𝜈 𝜉 𝜌 𝜎 MAE

Est. 1.178e−3 6.815e−2 0.609 0.383 0.99
95% CI (1.105e−3, 1.252e−3) (6.807e−2, 6.824e−2) (0.608, 0.609) (0.382, 0.383)

C. Estimation with Developed market 25 Fama–French portfolios.

Par. 𝛿 𝛾 𝜓 𝜇𝑐 𝜎𝑐
Est. 0.980 4.858 1.745 1.208e−2 1.958e−2
95% CI. (0.979, 0.981) (4.786, 4.931) (1.714, 1.776) (1.205e−2, 1.209e−2) (1.917e−2, 2.000e−2)

Par. 𝜈 𝜉 𝜌 𝜎 MAE

Est. 9.508e−05 0.139 0.490 0.375 0.65
95% CI (9.426e−05, 9.590e−05) (0.138, 0.140) (0.488, 0.491) (0.347, 0.403)

The table shows the estimation of the model structural parameters obtained by GMM where the moments are formed by the asset pricing equilibrium condition
that discounted expected returns should equal to one. The SDF is computed by substituting the proxy of cross-sectional consumption risk obtained as the first
principal component of cross-sectional moments of country consumption growth. Panel A shows the estimation with the Developed market MSCI indices. Panel
B shows the structural parameters estimation with all countries market MSCI indices. Panel C shows the structural parameters estimation with Fama–French 25
developed portfolios sorted by size and momentum. The mean absolute error (MAE) are expressed in percentage. The J-stats are respectively 0.17 in Panel A,
2.13 in Panel B and 0.25 in Panel C, and for all the cases, the model is not rejected at the 5% level of significance. The critical value of J-stat is obtained by
95% quantile of the bootstrap distribution of the objective function because we did not use the optimal weighting matrix. The confidence intervals are computed
using block-bootstrap by resampling of 7-quarters blocks. We made 1000 replications.

Table 4 displays the GMM estimation results based on the moment conditions of Eq. (11) for three different asset menus: the
eveloped MSCI indexes (Panel A), all MSCI indexes (Panel B), and the Fama–French 25 developed portfolios sorted by size and
omentum (Panel C). In each panel of the table, structural parameter estimates are shown with their 95% confidence intervals. These

onfidence bounds rely on standard errors that we obtain from a block-bootstrap by resampling blocks of a seven-quarter length to
ompute the distribution of the parameter estimates. The empirical distribution of the 𝐽 -stat is a byproduct of the same procedure.9

The first striking observation is that all model structural parameter estimates are statistically significant at the conventional level
of 5% because zero belongs to none of the 95% confidence intervals in the table.

Due to the sufficiently large weight10 put on non-pricing moments of Eq. (11), estimates of the unconditional mean (𝜇𝑐) and
standard deviation (𝜎𝑐) of the aggregate consumption growth and the autocorrelation (𝜌) of cross-sectional consumption risk match
their sample counterparts perfectly. Estimates of the preference parameters are well within the range of the values found in the
literature. The pure discount factor 𝛿 is estimated between 0.970 and 0.986. The risk aversion coefficient is estimated at 6.50 with
the developed markets asset menu, 1.95 with all market indexes, and 4.86 with the Fama–French 25 developed market portfolios.
The EIS coefficient is above 1 for all asset menus (1.15 with developed markets MSCI indexes, 2.86 with all markets MSCI indexes,
and 1.75 with Fama–French 25 developed market portfolios). In all cases, the risk aversion is greater than the inverse of the
elasticity of inter-temporal substitution, leaning toward investors’ preference for an early rather than late resolution of uncertainty
on international markets. This result corroborates existing estimation findings by Chen et al. (2013), Bansal et al. (2016), Meddahi
and Tinang (2016) and Constantinides and Ghosh (2017), and is deemed helpful in resolving many asset pricing puzzles.

Using the model parameter estimates, we back out the model-implied stochastic discount factor. The left panels of Fig. 2 present
the evolution of the model-implied SDFs computed with the parameter estimates from the three asset menus under consideration.

9 The bootstrap procedure allows us to better capture the finite-sample distribution of the parameter estimates and the 𝐽 -stat. This approach is also used
by Bansal et al. (2016) and Constantinides and Ghosh (2017) among others. Overall, the model is not rejected based on the bootstrap distribution of the 𝐽 -statistic
and we refer the reader to the corresponding figures reported in the caption of Table 4.

10 Parker and Julliard (2005) and Tédongap (2015) use a similar approach in their cross-sectional asset pricing model estimations via GMM. Yogo (2006)
shows the importance of including the non-pricing moments. In our analysis, the weight put on non-pricing moments is 100, corresponding to weighting the
10

mean squared errors generated by these moments 10,000 times compared to the asset pricing moment conditions.
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Fig. 2. Implied stochastic discount factor, realized and predicted expected returns.
This figure represents the evolution of the model-implied stochastic discount factor (see Eq. (8)) in the left panels, and the model’s predicted average returns
against the realized average returns. The sample period is from 1970Q1 to 2021Q1 in Panels A & B, and from 1991Q1 to 2021Q1 in Panel C. Rf_US represents
the average T-bill rate in US considered as the risk free rate. The country consumption risk is proxied by the first principal component of the cross-sectional
cumulants of country consumption growth rates. OECD and NON OECD recessions are represented by the shaded bars.

The ability of these SDFs to capture the business cycles is obvious and corroborates the observations from Panel B of Fig. 1. We see
that the model-implied SDFs peak during recessions; in particular, they spike during the 1970s oil shock, the 2008–2009 financial
crisis, and the COVID-19 pandemic in 2020.
11
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Table 5
GMM: Cross-sectional variance as proxy for cross-sectional consumption risk.

A. Estimation with the Developed market MSCI indices.

Par. 𝛿 𝛾 𝜓 𝜇𝑐 𝜎𝑐
Est. 0.979 1.019 2.098 1.684e−2 1.849e−2
95% CI . (0.979, 0.979) (1.014, 1.024) (2.083, 2.113) (1.683e−2, 1.684e−2) (1.848e−2, 1.850e−2)

Par. 𝜈 𝜉 𝜌 𝜎 MAE

Est. 6.710e−3 2.569e−5 0.958 0.063 0.49
95% CI (6.690e−3, 6.731e−3) (2.534e−5, 2.605e−5) (0.957, 0.959) (0.062, 0.065)

B. Estimation with all market MSCI indices.

Par. 𝛿 𝛾 𝜓 𝜇𝑐 𝜎𝑐
Est. 0.972 1.464 2.325 1.684e−2 1.849e−2
95% CI . (0.972, 0.973) (1.456, 1.471) (2.309, 2.340) (1.683e−2, 1.684e−2) (1.844e−2, 1.854e−2)

Par. 𝜈 𝜉 𝜌 𝜎 MAE

Est. 3.876e−2 3.067e−5 0.992 0.063 0.99
95% CI (3.874e−2, 3.878e−2) (3.018e−5, 3.116e−5) (0.991, 0.993) (0.061, 0.064)

C. Estimation with Fama–French 25 developed portfolios.

Par. 𝛿 𝛾 𝜓 𝜇𝑐 𝜎𝑐
Est. 0.981 2.056 1.821 1.208e−2 1.951e−2
95% CI . (0.980, 0.981) (2.052, 2.061) (1.816, 1.826) (1.207e−2, 1.208e−2) (1.951e−2, 1.952e−2)

Par. 𝜈 𝜉 𝜌 𝜎 MAE

Est. 1.010e−2 1.844e−2 0.519 0.054 0.66
95% CI (1.009e−2, 1.011e−2) (1.816e−2, 1.873e−2) (0.517, 0.520) (0.053, 0.055)

The table shows the estimation of the model structural parameters obtained by GMM where the moments are formed by the asset pricing equilibrium condition
that discounted expected returns should equal to one. The SDF is computed by substituting the rescaled cross-sectional variance of country consumption growth
as proxy of cross-sectional consumption risk. Panel A shows the estimation with the Developed market MSCI indices. Panel B shows the structural parameters
estimation with all market MSCI indices. Panel C shows the structural parameters estimation with Fama–French 25 developed portfolios sorted by size and
momentum. The J-stat are respectively 0.19 for Panel A, 2.18 for Panel B and 0.26 for Panel Cand for all the cases, the model is not rejected at the 5% level of
significance. The critical value of J-stat is obtained by 95% quantile of the bootstrap distribution of the objective function because we did not use the optimal
weighting matrix. The confidence intervals are computed using block-bootstrap by resampling of 7-quarters blocks. We made 1000 replications.

For each scenario, we also report in Table 4 the model’s mean absolute pricing error (MAE). Given the structural parameter
stimates, we can compute the 𝑥𝑡 series from Eq. (10) and plug it into Eq. (8) to obtain the SDF series 𝑀̂𝑡. The predicted (or

model-implied) Euler equation error, the predicted asset expected returns, and the associated MAE are computed as follows:

𝑒𝑖 = 𝑀̂𝑅𝑖 − 1, 𝑅̄pred
𝑖 = 1

̄̂𝑀

[

𝑒𝑖 + 1 − ĉov
(

𝑀̂,𝑅𝑖
)]

, and MAE = 1
𝑁

𝑁
∑

𝑖=1

|

|

𝑒𝑖|| . (12)

where 𝑀̂𝑅𝑖 is the sample average of the discounted asset 𝑖’s gross return series, ̄̂𝑀 is the sample average of the model-implied SDF
series, and ĉov

(

𝑀̂,𝑅𝑖
)

is the sample covariance between the model-implied SDF and the asset 𝑖’s gross return series. The table shows
that the MAE is 0.49% with the developed market MSCI indexes, 0.99% with all market indexes, and 0.65% with the Fama–French 25
developed market portfolios. A more meaningful comparison of MAE across different model specifications or estimation alternatives
can prove relevant as in the next section.

Although the MAE statistics give a summary measure of the overall fit of each scenario or model specification, it is also helpful
to have a visual impression of the relative empirical performance of each specification we investigate as advocated by Lettau and
Ludvigson (2001); thus, these are reported in the right panels of Fig. 2. For a given scenario, each panel plots the predicted expected
return of each asset, obtained using the corresponding structural parameter estimates, against the realized average return. If the
model fits perfectly, then all the assets should lie along the 45-degree line that is also plotted. Deviations from this 45-degree line
represent pricing errors, and assets situated on the line are considered as fairly priced according to our model. Assets above the line
are considered as over-priced, whereas assets below the line are under-priced. Fig. 2 illustrates well the impressive asset pricing
performance of the heterogeneous-agents consumption-based asset pricing model for the developed country indices and the Fama–
French 25 developed portfolios, as all assets lie on the 45-degree line. For the broader asset menu, we observe that developed market
indices remain fairly priced, whereas the emerging and frontier are all over-valued.

3.2.2. Estimation of the structural parameters using the cross-sectional moments
In the previous GMM specification, we use the principal component of the cross-sectional cumulants of consumption growth
12

rates to summarize their information content, which is fully embedded within cross-sectional consumption risk. Our model,
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however, assumes a positive process for cross-sectional consumption risk, which contrasts with the PCA-based proxy. To rectify this
incongruity, we present an alternative approach that ensures the positivity of the proxy for cross-sectional consumption risk. This
is particularly crucial in the GMM estimation, where structural parameters, including those governing the positive cross-sectional
consumption risk process, are estimated. In the following GMM specification, the cross-sectional variance only is used to back out
cross-sectional consumption risk. To harness information from the cross-sectional skewness and kurtosis, we introduce associated
moment conditions that compel the GMM model estimation to align with their observed dynamics, encompassing parameters such
as autoregressive coefficients, means, and variances.

We recall that 𝑥𝑡 ≡
(

exp
(

𝛾 (𝛾 − 1) 𝜎2

2

)

− 1
)

𝜔𝑡 and we use the formula of the conditional cross-sectional variance given
in Eq. (A.3) of the internal appendix, assuming that all idiosyncratic income shocks are related to the global business cycle, i.e., 𝜔̃ = 0.
In this case, we can directly back out another empirical proxy of 𝑥𝑡 as follows:

𝑥̂𝑡 =
exp

(

𝛾 (𝛾 − 1) 𝜎2

2

)

− 1

𝜎2 + 𝜎4

4

v̂argcg𝑡 (13)

where v̂argcg𝑡 is an estimate of the cross-sectional variance in the data.
Eq. (13) guarantees the positivity of 𝑥̂𝑡, consistent with the theoretical assumption, provided that 𝛾 > 1. From Eq. (8), we can

now compute an estimate 𝑀̂𝑡 of the common SDF that prices the test assets at hand, and form the following moment conditions:

E
[

𝑒𝑡 (𝛩)
]

= 0, with 𝑒𝑡 (𝛩) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 − 𝑀̂𝑡

[

𝑅′
𝑠,𝑡 𝑅

′
𝑓,𝑡

]′

𝜇𝑐 − âggcg𝑡

𝜎2𝑐 −
[

âggcg2𝑡 − âggcg
2
]

𝑚𝑥 − 𝑥̂𝑡

𝑣𝑥 −
(

𝑥̂2𝑡 − 𝑥̂
2)

𝜌𝑣𝑥 −
(

𝑥̂𝑡𝑥̂𝑡−1 − 𝑥̂
2)

E
[

skewcg𝑡
]

− ̂skewcg𝑡

var
[

skewcg𝑡
]

−

(

̂skewcg
2
𝑡 − ̂skewcg

2
)

ac1
[

skewcg𝑡
]

−

(

̂skewcg𝑡 ⋅ ̂skewcg𝑡−1 − ̂skewcg
2
)

E
[

kurtcg𝑡
]

− k̂urtcg𝑡

var
[

kurtcg𝑡
]

−

(

k̂urtcg
2
𝑡 − k̂urtcg

2
)

ac1
[

kurtcg𝑡
]

−

(

k̂urtcg𝑡 ⋅ k̂urtcg𝑡−1 − k̂urtcg
2
)

⎞

⎟

⎟

⎟

⎟
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⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (14)

where E
[

skewcg𝑡
]

, var
[

skewcg𝑡
]

, and ac1
[

skewcg𝑡
]

are the theoretical unconditional moments of the cross-sectional skewness, and
E
[

kurtcg𝑡
]

, var
[

kurtcg𝑡
]

, and ac1
[

kurtcg𝑡
]

are the cross-sectional kurtosis equivalent, as defined in Appendix A. In total, there are
𝐾 + 11 moment conditions.

Table 5 provides the GMM estimation results based on the moment conditions of Eq. (14) for the same three different asset
menus we consider in the previous section. Table 5 is structured identically to Table 4. Combined information including from Table
A4 of the external appendix show that results from this alternative GMM strategy are robust as estimated Euler equation errors
remain statistically close to zero. All structural parameter estimates are still statistically significant at the 95% confidence level. The
subjective discount factor estimates range between 0.972 and 0.982, the RRA coefficient estimates range between 1.01 and 2.74,
suggesting that country representative agents are more risk-tolerant than usually assumed in the asset pricing literature, and the EIS
estimates range between 1.61 and 2.33, depending on the asset menu. It also exceeds the inverse of the risk aversion coefficient, still
corresponding to a preference for early resolution of uncertainty and, therefore, corroborating previous findings in the literature.

The cross-sectional consumption risk is more persistent with an autocorrelation coefficient 𝜌 that is between 0.96 and 0.99 when
the asset menu comprises MSCI indexes. This estimate deviates from the sample value as the current GMM specification loses its
target due to extra overidentifying restrictions compared to the previous specification. However, the persistence of cross-sectional
consumption risk (0.52) with the present GMM specification is comparable in magnitude to the previous one (0.49) when the test
assets are the Fama–French 25 developed portfolios.
13
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Looking at the MAE, we see that the model’s fit with the current GMM specification does not change compared to the previous
ne.11 When the asset menu comprises the developed MSCI indexes, both GMM specifications deliver an MAE of 0.49%. The MAE
alues for both are equal to 0.99% when the test assets are all countries’ MSCI indexes. Likewise, MAE values are 0.66% and 0.65%
or the current and the previous GMM specification, respectively, when testing both on the Fama–French 25 developed portfolios.

hile this observation is reassuring, it questions the information content of cross-sectional higher-order cumulants and warrants
ome explanations.

Using only the cross-sectional variance as a proxy may seem more restrictive, focusing merely on one dimension. Our SDF’s
onlinear (exponential affine) form uniquely captures the interactions between aggregate consumption growth and the cross-
ectional consumption risk. Using the cross-sectional variance as a proxy within this nonlinear SDF allows for complex, nonlinear
ombinations of aggregate consumption growth with the cross-sectional variance of consumption growth rates, which can potentially
ncapsulate the relevant information in cross-sectional higher-order cumulants, namely skewness and kurtosis. When estimating the
MM based on the nonlinear SDF, both proxies of cross-sectional consumption risk deliver comparable pricing errors. This finding
nderscores the importance and ability of the nonlinear SDF to exploit the nonlinear interactions between aggregate consumption
rowth and cross-sectional variance to potentially capture the richness of information hidden in cross-sectional higher-order
umulants such as skewness and kurtosis.

Overall, the model performs well in predicting the average expected returns of country stock market indices. Thus, the original
dea of Constantinides and Ghosh (2017) regarding the cross-sectional distribution of household consumption as a driver of asset
rices in the U.S. also applies internationally. That is, the cross-sectional distribution of country consumption growth rates can
xplain the variation of expected returns across international financial markets.

.3. Linear factor models

In this subsection, we explore commonly used linear factor pricing methods, where the SDF can be approximated by a linear
ombination of the factors. This approach is the most popular in cross-sectional asset pricing and ties asset risk premia directly to
heir comovement with the factors. In our main specification, factors are the world consumption growth, 𝛥𝑐𝑡, and the cross-sectional
onsumption risk level and changes, 𝑥𝑡 and 𝛥𝑥𝑡, respectively. We recall that, since conditional cross-sectional moments of the country
elative consumption growth rates in date 𝑡 solely depend on 𝑥𝑡 (through its perfect linear dependence with 𝜔𝑡) as shown in the
nternal Appendix A, we can use these moments as factors to capture the information embedded in 𝑥𝑡.

The return on a given asset 𝑖 in excess of the return on the risk-free asset should satisfy the standard Euler asset pricing equation
iven by:

E
[

𝑀𝑡𝑅
𝑒
𝑖,𝑡

]

= 0, (15)

here the non-linear SDF specified in Eq. (8) can be approximated by first-order log-linear approximation as follows:

−
𝑀𝑡

E
[

𝑀𝑡
] ≈ 1 + 𝑚𝑡 − E

[

𝑚𝑡
]

= 𝑏0 + 𝑏′𝑓𝑡, (16)

where 𝑏0 = −1− 𝑏1𝜇𝑐 − 𝑏2𝑚𝑥 and the risk prices are given by 𝑏′ =
(

𝑏1, 𝑏2, 𝑏3
)

with 𝑏1, 𝑏2, and 𝑏3 expressed in Eq. (9), and the factors
are given by 𝑓 ′

𝑡 =
(

𝛥𝑐𝑡, 𝑥𝑡, 𝛥𝑥𝑡
)

. Similar to our analysis in Section 3.2, we consider two baseline model specifications. In the first,
information about cross-sectional consumption cumulants is aggregate, i.e., we have a three-factor linear model where 𝑥𝑡 is proxied
by the first principal component of the conditional cumulants of country consumption growth rates. In the second, information
about cross-sectional consumption cumulants is disaggregate, i.e., we have a seven-factor model where instead of 𝑥𝑡 and 𝛥𝑥𝑡, we
use directly the three cross-sectional moments (variance, skewness, and kurtosis) and their changes.

The standard Euler Eq. (15) enables to obtain the following beta formulation of expected returns:

E
[

𝑅𝑒𝑖,𝑡
]

= cov

[

−
𝑀𝑡

E
[

𝑀𝑡
]𝑅𝑒𝑖,𝑡

]

= 𝑏′cov(𝑓𝑡, 𝑅𝑒𝑖,𝑡) = 𝝀′𝛽𝑖, (17)

here 𝝀 = 𝛴𝑓𝑓 𝑏 and 𝛽𝑖 = 𝛴−1
𝑓𝑓𝜎𝑓𝑖, and where 𝛴𝑓𝑓 = E

[

(

𝑓𝑡 − 𝜇𝑓
) (

𝑓𝑡 − 𝜇𝑓
)′
]

, 𝜇𝑓 = E
[

𝑓𝑡
]

, and 𝜎𝑓𝑖 = E
[

(

𝑓𝑡 − 𝜇𝑓
)

𝑅𝑒𝑖,𝑡
]

. The
omponents of the vectors 𝝀 and 𝛽𝑖 are the factor risk premia and the amounts of factor risks embedded in asset 𝑖, respectively.

We use the Fama and MacBeth (1973), henceforth FM, regressions to estimate the factor loadings for each asset and the risk
remium attached to each factor. In short, in a first step, we do a time-series regression of the excess returns on the factors to obtain
n estimate of 𝛽𝑖 for each asset:

𝑅𝑒𝑖,𝑡 = 𝑎𝑖 + 𝛽′𝑖𝑓𝑡 + 𝜖𝑖,𝑡, 𝑖 = 1,… , 𝑁 and 𝑡 = 1,… , 𝑇 . (18)

n a second step, for each time period 𝑡, we do a cross-sectional regression of excess return on the beta to get a time-series estimate
f the vector 𝝀 of factor risk premia as well as time-series estimates of the pricing errors 𝛼𝑖. From the beta formulation in Eq. (17),
he excess return on asset 𝑖 for each time period can be expressed as follows:

𝑅𝑒𝑖,𝑡 = 𝝀′𝑡𝛽𝑖 + 𝛼𝑖,𝑡, 𝑖 = 1, 2,… , 𝑁 for each 𝑡. (19)

11 A visual comparison of the model’s fit across the two GMM specifications can be done by looking at Figure B1 of the external appendix. It is configured
14

s Fig. 2. Both figures are indistinguishable visually.
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If the expected returns are fully spanned by the betas, then the average pricing error 𝛼𝑖 ≡ E
[

𝛼𝑖,𝑡
]

should be equal to zero. Otherwise,
𝛼𝑖 ≠ 0 and the model is considered as misspecified.

Following Cochrane (2005), 𝝀 and 𝛼𝑖 can be estimated as the time-series average of the cross-sectional regressions estimates.
These estimates and their sampling errors are given by:

𝝀̂ = 1
𝑇

𝑇
∑

𝑡=1
𝝀𝑡, 𝛼̂𝑖 =

1
𝑇

𝑇
∑

𝑡=1
𝛼̂𝑖𝑡, 𝜎

2 (𝝀̂
)

= 1
𝑇 2

𝑇
∑

𝑡=1

(

𝝀̂𝑡 − 𝝀̂
)2 , 𝜎2

(

𝛼̂𝑖
)

= 1
𝑇 2

𝑇
∑

𝑡=1

(

𝛼̂𝑖𝑡 − 𝛼𝑖
)2 . (20)

The joint significance of the pricing errors can be tested using the chi-squared asymptotic distribution as follows:

𝛼′𝛺̂−1𝛼 ∼ 𝜒2 (𝑁 −𝐾) where 𝛺̂ = 1
𝑇 2

𝑇
∑

𝑡=1

(

𝛼̂𝑖𝑡 − 𝛼̂𝑖
) (

𝛼̂𝑖𝑡 − 𝛼̂𝑖
)′ . (21)

Using Eq. (21) for testing the joint significance of the alphas does not account for the fact that factor risk exposures (betas) have
been estimated in the first stage; it also assumes that the pricing errors are uncorrelated through time (no serial correlation). To
correct these two limitations, we use the Shanken (1992) correction for the first and the Newey and West (1987) heteroskedasticity
and autocorrelation-adjusted variance–covariance matrix for the second.

We finally provide two additional goodness-of-fit measures commonly used in the literature (e.g., Campbell and Vuolteenaho,
2004; Yogo, 2006; Darrat et al., 2011), namely, the mean absolute pricing error (MAE), and the pseudo R-squared (𝑅̄2), defined by:

𝑀𝐴𝐸 = 1
𝑁

𝑁
∑

𝑖=1

|

|

𝛼̂𝑖|| and 𝑅̄2 = 1 −

⎛

⎜

⎜

⎜

⎝

𝛼̂′𝛼̂
(

𝑅̄𝑒 − 1
𝑁

∑𝑁
𝑖=1 𝑅̄

𝑒
𝑖

)′ (
𝑅̄𝑒 − 1

𝑁
∑𝑁
𝑖=1 𝑅̄

𝑒
𝑖

)

⎞

⎟

⎟

⎟

⎠

, (22)

where 𝛼̂𝑖 is the average pricing error of asset 𝑖, 𝛼̂ is the vector of the 𝛼̂𝑖s, 𝑅̄𝑒𝑖 is the average excess return of asset 𝑖, and 𝑅̄𝑒 is the
vector of the 𝑅̄𝑒𝑖 s.

3.3.1. Estimation of the factor risk premia using the benchmark dataset
The second-step FM regression results reported in Table 6 are based on our benchmark asset menu consisting of 69 developed,

emerging, frontier, and standalone market MSCI indices.12 Column (1) corresponds to the representative-agent consumption-based
CAPM model (CCAPM), where the unique pricing factor is the world consumption growth. Column (2) corresponds to the model with
heterogeneous agents and CRRA preferences (HCRRA), where the two pricing factors are the world consumption growth and the
level of cross-sectional consumption risk. Finally, column (3) matches the specification with heterogeneous agents and Epstein–Zin
preferences (HEZ). In this latter case, there are three pricing factors: world consumption growth, and the level and changes of cross-
sectional consumption risk. The proxy for cross-sectional consumption risk is the first principal component of the cross-sectional
cumulants of country consumption growth rates.

We first comment on the global performance of the different models before looking closely at the estimated coefficients. Model
performance measures are reported in the bottom panel of Table 6. Column (1) shows that the CCAPM model explains 47.05%
of the cross-sectional variability of expected returns on country MSCI indexes, with an MAE of 0.80%. However, it cannot fully
capture the average expected excess returns as the pricing error of a typical asset appears to be significantly different from zero (the
average absolute 𝑡-stat of the alphas is 2.15). On the other hand, the HCRRA model in column (2) shows an improvement compared
to the CCAPM model. Indeed, it explains 58.74% of the variability of the countries’ MSCI indexes expected excess returns, with
an MAE of 0.71%, and pricing errors that on average are not statistically different from zero at the standard level of significance.
Thus, accounting for agents’ heterogeneity is important in explaining the expected returns of international equity indices. Finally,
the HEZ model in column (3) displays further improvement over the HCRRA. The model captures 60.31% of the variability of the
countries’ MSCI indexes expected returns and performs pretty well in mean absolute pricing error at 0.69%. Likewise, the average
absolute 𝑡-stat of the model’s alphas is 1.54, thus the typical alpha is not statistically different from zero at a 10% significance level,
even though the joint nullity of the model pricing errors is rejected by the corresponding test.

Turning to the coefficients estimates, we see that the factor risk premia are strongly identified as the rank tests in the bottom panel
of Table 6 reject the null hypothesis of their weak identification.13 Moreover, these reduced-form factor risk premiums are statistically
significant, stable across different model specifications, and possess the expected theoretical sign. Focusing on the HEZ model in
column (3), both the level and changes in cross-sectional consumption risk carry negative risk premia estimates under the PCA-based
proxy, amounting to −0.64 and −0.28, with 𝑡-statistics of −1.96 and −2.19, respectively. To put these estimates in perspective, a
one-standard deviation reduction in the cross-sectional consumption risk’s beta (equivalent to a change in 𝛽𝑖,𝑥 by −1.576 in the
cross-section) aligns with a 1.01% increment in the risk premium, derived as −0.64×−1.576. Likewise, a one-standard deviation

12 Similar results without the intercept in the second-step regressions are presented in Tables A5, A6 and A7 of the external appendix. We also refer the
eader to it for discussions about weakly identified factors in Sections A and B, including illustrations in Figure B2 and Table A8. Darrat et al. (2011) examine
linear factor model featuring cross-sectional variance of country consumption growth rates but do not address the weak-identification issue.
13 The results in Tables A9, A10 and A11 of the external appendix show that our tests are very powerful in detecting a non-zero risk premium, both in the

ingle factor and the multi-factor cases. Assuming a data-generating process similar to the one we have in our observed data, the probability of not rejecting the
ull hypothesis of a zero risk premium for a factor when it is false, and therefore committing a type II error, is less than 1%. Our simulations’ results support
15

hat the prices of risk are well-estimated and our tests do not lack power provided we consider the actual variation in empirical betas of the assets.
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Table 6
Fama-MacBeth regressions results: All countries MSCI indexes.

Consumption-based Models CAPM and 3 factors Models
(1) (2) (3) (4) (5) (6) (7) (8) (9)

CC
AP

M

H
CR

RA

H
EZ DL
P

H
DL

P

H
CR

RA
-M

O
M

H
EZ

-M
O

M

CA
PM

FF
-3

𝜆0

1.60
(2.84)
[2.83]

2.04
2.41)
[2.32]

2.18
(2.61)
[2.25]

1.52
(2.70)
[2.62]

1.16
(1.81)
[1.68]

1.48
(2.39)
[2.34]

1.67
(2.21)
[0.97]

𝜆0

0.85
(0.59)
[0.58]

1.65
(1.96)
[1.70]

𝜆aggcg
0.35

(0.98)
[0.97]

−0.26
(−0.55)
[−0.53]

−0.53
(−1.09)
[−0.95]

0.42
(1.77)
[1.73]

0.52
(2.37)
[2.25]

0.36
(1.35)
[1.32]

−0.10
(0.41)

[−0.20]
𝜆𝐶𝐴𝑃𝑀

1.16
(−0.79)
[0.76]

−2.29
(−1.58)
[−1.41]

𝜆𝑥
−0.18

(−0.56)
[−0.54]

0.03
(0.10)
[0.09]

𝜆△𝑥

−0.41
(−3.38)
[−3.01]

𝜆vargcg
0.34

(0.27)
[0.27]

−0.32
(−0.23)
[−0.22]

−0.16
(−0.18)
[−0.18]

−0.29
(−0.30)
[−0.14]

𝜆𝐻𝑀𝐿

1.43
(0.69)
[0.60]

𝜆skewcg

0.16
(0.39)
[0.38]

−0.22
(−0.70)
[0.32]

𝜆𝑆𝑀𝐵

0.05
(0.06)
[0.05]

𝜆kurtcg

0.45
(0.41)
[0.40]

0.53
(0.52)
[0.25]

-

𝜆△vargcg

−1.00
(−1.20)
[−1.12]

−0.68
(−0.87)
[−0.38]

𝜆△skewcg

0.55
(1.97)
[1.18]

𝜆△kurtcg

2.23
(2.63)
[1.15]

𝑅2 8.63% 12.42% 35.27% 11.78% 22.92% 10.51% 45.13% 8.41% 12.18%
MAE 0.52 0.50 0.42 0.51 0.50 0.51 0.40 0.52 0.57
Rank test
p-value

4.34
(0.00)

6.54
(0.00)

5.77
(0.00)

3.08
(0.00)

1.81
(0.02)

4.19
(0.00)

0.31
(1.00)

495.15
(0.00)

1.02
(0.44)

Alpha test
p-value

414.23
(0.00)

96.47
(0.00)

60.22
(0.00)

243.76
(0.00)

223.77
(0.00)

273.65
(0.00)

28.57
(0.03)

68.71
(0.00)

42.63
(0.00)

Avrge.|t-stat (𝛼)| 1.46 1.51 1.15 1.54 1.56 1.67 0.65 1.30 1.07

he table shows the Fama–MacBeth regressions results when the asset menu comprises the 69 developed, emerging, frontier, and standalone market MSCI indices. Consumption-based factors are
omputed from a balanced panel of 24 developed and emerging country consumption data. The data frequency is quarterly for the consumption-based model specifications, and the sample period
uns from 1961Q1 to 2021Q1. The data frequency is monthly for the global CAPM and the global Fama–French three-factor model, with different starting months, 1961M1 and 1990M1, respectively,
nd the same end month, 2021M3. Our estimation sample is constrained by the shortest time series. The global CAPM factor is the MSCI World index excess return over the three-month U.S. Tbill
ate. For each factor risk premium estimate, the Newey–West (Shanken) 𝑡-statistics are shown in parentheses (square brackets). 𝑅2 is the r-squared from the cross-sectional regression of average
xcess returns on the betas. MAE is the mean absolute pricing error. The rank test statistic is computed as in Kleibergen and Zhan (2020) and the Alpha test statistic is computed from equation
21). Avrge.|𝑡-stat(𝛼)| is the average absolute Shanken-adjusted Newey–West 𝑡-statistics of the pricing errors.

ecrease in the beta for changes in cross-sectional consumption risk, resulting in a change of 𝛽𝑖,𝛥𝑥 by −1.464 in the cross-section,
ignifies a 0.41% rise in the risk premium (calculated as −0.28×−1.464), everything else being equal. Note that this last contribution
o the risk premium is pertinent only within the Epstein–Zin’s preference framework. Given that the average risk premium across
he 69 MSCI indices is 2.40%, and the quartile values are 1.50%, 2.24%, and 3.09%, respectively, these findings hold substantial
conomic weight. In summary, these results confirm the empirical validity of the heterogeneous-agents consumption-based asset
ricing model with Epstein–Zin preferences as changes, in addition to the level, of cross-sectional consumption risk appear to be a
ignificant cross-sectional pricing factor for international equity indices.

We further delve into the economic significance of our two novel factors by dissecting the risk premium associated with taking
long position in emerging markets and a short position in developed markets, say the EMD premium, breaking down their

ontributions from different factors and the portion unexplained by the model. The results are presented in Panels A, B, and
of Table 7. In the data, the difference in average excess returns between emerging and developed countries (i.e., the EMD

remium), amounting to 0.98% quarterly, aligns with the well-established notion in the literature that investment in emerging
ountries entails higher risk when compared to investments in developed countries. This is a consensus understanding supported by
xtensive research. When we examine emerging markets’ exposure relative to developed markets concerning a specific risk factor,
16

t is reasonable to anticipate a positive long-short premium. This premium should be positive, calculated as the factor lambda
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Table 7
Decomposition of the risk premium.

Data Emerging Developed Difference Explained

𝑅𝑒𝑥 3.03 2.04 0.98 0.98

Model 𝛽Emerging 𝛽Developed 𝛽Difference 𝜆factor𝛽Difference
Panel A: CCAPM

aggcg 1.51 1.28 0.23 0.35

Panel B: HCRRA

aggcg 1.13 1.12 0.01 0.01
𝑥 −1.70 −0.87 −0.83 0.53

Panel C: HEZ

aggcg 1.09 1.11 −0.02 −0.03
𝑥 −1.18 −0.72 −0.46 0.29
𝛥𝑥 −1.37 −0.42 −0.94 0.26

Panel D: DLP

aggcg 1.53 1.27 0.26 0.43
vargcg 0.00 −0.02 0.02 −0.06

Panel E: HDLP

aggcg 1.32 1.23 0.09 0.14
vargcg 0.22 0.06 0.16 −0.46
𝛥vargcg −0.74 −0.26 −0.48 0.80

Panel F: HCRRA-MOM

aggcg 1.77 1.34 0.43 0.59
vargcg 0.25 0.08 0.17 −0.46
skewcg 1.60 0.82 0.78 0.51
kurtcg −0.19 −0.08 −0.11 0.00

Panel G: HEZ-MOM

aggcg 1.73 1.35 0.38 0.51
vargcg 0.56 0.17 0.39 −1.00
skewcg 1.63 0.82 0.81 0.50
kurtcg −0.37 −0.19 −0.18 0.01
𝛥vargcg −0.79 −0.28 −0.51 0.72
𝛥skewcg −0.06 0.10 −0.17 −0.03
𝛥kurtcg 0.36 0.26 0.10 −0.01

Panel H: HEZ-MOM (Parsimonious)

aggcg 1.37 1.25 0.11 0.15
vargcg 0.38 0.12 0.26 −0.61
skewcg 1.63 0.85 0.78 0.49
𝛥vargcg −0.70 −0.24 −0.46 0.60

This table shows the decomposition of the risk premium with respect to consumption factors. It reports
the risk exposures (𝛽s) and their implied risk premiums. 𝑅𝑒𝑥 is the average excess return reported for
emerging countries, developed countries, and the difference between the two. 𝛽s are obtained from the
time series regressions of return on consumption factors. The risk premium is computed as the product
of risk exposure and risk price. These betas and risk prices correspond to models estimated in Table 6

ultiplied by the spread between the betas of emerging and developed markets. This expectation aligns with the inherent risk
ifferential between emerging and developed markets, regardless of the specific factor being considered.

Within the observed EMD premium of 0.98%, the CCAPM’s aggregate consumption factor contributes 0.35%. However, when
onsidering the HCRRA and HEZ models, this factor’s contribution is minimal at 0.01% and −0.03%, respectively. Instead, the

PCA-based proxy for cross-sectional consumption risk becomes predominant in these models. Specifically, the HCRRA and HEZ
models account for 0.54% and 0.52% of the EMD premium, which surpasses the 0.35% attributed to the CCAPM. Consistent with
theoretical expectations and the extensive empirical evidence confirming that emerging markets investments bear higher risk, betas
of emerging and developed stocks on the level and changes of cross-sectional consumption risk are negative, with the negative trend
being significantly pronounced for emerging market stocks. For the level, the betas are −1.18 for emerging stocks and −0.72 for
developed stocks. For changes, the values are −1.37 and −0.42, respectively. Both the level and changes in our PCA-based proxy
for cross-sectional consumption risk exhibit positive and substantial contributions to the EMD premium.

Table 6’s columns (4) through (7) present the outcomes of the second-step FM regressions, replacing the cross-sectional
consumption risk with actual cross-sectional moments of countries’ consumption growth rates. An international investor typically
seeks to diversify their portfolio across various markets to mitigate risk and enhance potential returns. However, the nature of
the relationship between international stock markets and the cross-sectional moments of countries’ consumption growth rates can
significantly impact the attractiveness of these investments.
17
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An international stock market negatively correlated with the cross-sectional variance of countries’ consumption growth rates
ends to underperform during times of significant variability in these rates, such as the 1990 oil price shock or the 2020 COVID-19
andemic, as shown in Panel A of Fig. 1. Such performance can be disadvantageous during global economic uncertainties when
nvestors seek stability in portfolios. Consequently, global investors may shy away from markets that struggle during heightened
ross-sectional variance and expect a higher premium for investing in them. This perspective highlights the link between a negative
isk premium and cross-sectional variance.

In column (4) of Table 6, the cross-sectional consumption risk is swapped with the cross-sectional variance of country
onsumption growth rates, resulting in a two-factor model, the Darrat et al. (2011) model, here referred to as DLP, akin to column

(2). Similarly, column (5), resembling column (3), introduces the HDLP model, a theoretically-driven extension of the DLP model,
with the addition of changes in cross-sectional variance. Both factor risk premiums are negative and highly statistically significant, as
indicated in columns (4) and (5). Comparing the adjusted 𝑅2 values between the HCRRA and the DLP model provides an immediate
measure of our PCA-based proxy’s performance compared to cross-sectional variance. The two-factor HCRRA model achieves an 𝑅2

of 58.74%, surpassing the DLP model’s 𝑅2 of 51.35%. Similarly, the three-factor HEZ model, with an 𝑅2 of 60.31%, outperforms
the three-factor HDLP model, which yields an 𝑅2 of 54.00%.

Let us revisit the breakdown of the 0.98% quarterly EDM premium. In the DLP model, 0.36% is attributed to it, with 0.43%
coming from aggregate consumption growth and −0.06% from the cross-sectional variance of country consumption growth rates.
As shown in Panel D of Table 7, once exposure to aggregate consumption growth is factored in, the exposure of emerging and
developed markets to the cross-sectional variance factor becomes negligible. Consequently, the contribution of the cross-sectional
variance factor to the EMD premium is also negligible.

Moving on to the HDLP model, it explains 0.48% of the EMD premium, as depicted in Panel E of Table 7. Interestingly, this
model’s predicted premium is primarily driven by changes in cross-sectional variance, a factor rooted in recursive preferences akin
to Epstein–Zin.

The PCA-based proxy for cross-sectional consumption risk (HEZ specification) outperforms the cross-sectional variance factor
(HDLP specification). Our results highlight the substantial positive contribution of the PCA-based proxy, amounting to 0.29%, in
explaining the EMD premium. In contrast, the contribution from the cross-sectional variance factor is negative at −0.46%. Overall,
our findings support Epstein–Zin preferences over CRRA preferences and suggest that, while the cross-sectional variance factor is
significant, our PCA-based proxy for cross-sectional consumption risk, which incorporates information about cross-sectional skewness
and kurtosis factors, is more effective in explaining variations in expected excess returns across international assets.

Recognizing that cross-sectional cumulant factors in empirical data exhibit imperfect correlations compared to the model’s
assumptions, we explore ad-hoc specifications. These specifications supplement the cross-sectional variance factor with cross-
sectional higher-order moments, allowing us to examine empirically whether information from these moments, unaccounted for
by cross-sectional variance, holds value in pricing international equities. Although this approach does not directly derive from the
model, it aligns with its underlying assumptions. In various empirical analyses, the stock markets of different countries show diverse
sensitivities to specific cross-sectional moments of consumption growth rates. This suggests that beyond the typical factors like
aggregate consumption growth and cross-sectional variance, actual cross-sectional higher-order moments could also play a pivotal
role in pricing international stock indices.

Column (6) of Table 6 departs from column (2) like column (4) but replaces the cross-sectional consumption risk with cross-
sectional variance, skewness, and kurtosis, forming a four-factor model known as the HCRRA-MOM. Lastly, column (7), paralleling
column (3), presents the seven-factor HEZ-MOM model, an intuitively guided extension of the HCRRA-MOM based on Epstein–Zin’s
recursive utility in our theoretical framework, which includes changes in the cross-sectional variance, skewness, and kurtosis of
country consumption growth rates as extra factors.

Negative cross-sectional skewness of countries’ consumption growth rates indicates many countries experiencing below-average
growth. A stock market declining in such scenarios shows its sensitivity to widespread economic downturns. Events like the 1997
Asian Financial Crisis and the early 2000s Dot-com bubble caused significant negative skewness in global consumption growth
rates, as seen in Panel A of Fig. 1. Markets declining during these periods posed investment risks, with investors facing losses both
from economic challenges and underperforming stock markets. Hence, investors might anticipate higher premiums for entering
such vulnerable markets, tying a positive risk premium to cross-sectional skewness. Our empirical findings, particularly in the
HCRRA-MOM and HEZ-MOM models, support this skewness pricing.

High cross-sectional kurtosis of consumption growth rates signifies extreme values in the distribution. Markets underperforming
in such conditions fail to offer protection during economic tail events, crucial for risk management. For example, the early 2010s
European debt crisis introduced significant consumption growth rate variations, resulting in high kurtosis as visualized in Panel A of
Fig. 1. Markets negatively correlated with this high kurtosis proved unreliable during financial distress. Nevertheless, our findings
lack empirical support for international asset pricing based on the cross-sectional kurtosis of country consumption growth rates.

Overall, Table 6 showcases estimates of consumption-based factor risk premiums, most of which are statistically significant,
except for the cross-sectional kurtosis in the HCRRA-MOM and HEZ-MOM models, as well as the changes in the cross-sectional
skewness and kurtosis within the HEZ-MOM model. This leads us to propose the Parsimonious four-factor model, as delineated
in column (8) of Table 6. This model omits factors from the HEZ-MOM model that are not statistically significant, also mitigating
concerns of having excessive factors in the original HEZ-MOM setup.

The Parsimonious and HEZ-MOM models demonstrate similar efficacy, with their risk price estimates and explanatory prowess
closely aligned. Further, the signs of the factor risk premium estimates from both models align with theoretical predictions. When
18

we juxtapose the three-factor HEZ model with the four-factor parsimonious HEZ-MOM model, they exhibit comparable performance
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metrics: their 𝑅2 values are 60.31% and 61.98%, respectively, with an identical MAE of 0.69%. They also have average absolute
𝑡-statistics of 1.54 and 1.01 for alphas, respectively, indicating that typical asset pricing errors are statistically insignificant at the
10% level. However, there is a notable difference in the rank test; it confirms the accurate identification of factor risk premiums in
the HEZ model, a characteristic absent in the parsimonious HEZ-MOM model.

We further juxtapose the efficacy of our heterogeneous-agents consumption-based model specifications with the global Capital
Asset Pricing Model (CAPM) and the global Fama–French three-factor (FF-3) model. In Table 6, these models align with column
(9) and (10), respectively. Firstly, the rank test implies that the factor risk premiums in both CAPM and the FF-3 model are
accurately identified. Secondly, in comparison to all previous consumption-based model specifications, these models display subpar
performance, accounting for merely 26.92% and 19.32% of the variability in the expected returns across global financial markets,
respectively.14 In a similar vein to the CCAPM, but contrary to the HEZ and HDLP models, neither the CAPM nor FF-3 models fully
capture the average expected excess returns. This shortfall is evidenced by the significant deviation of a typical asset’s pricing error
from zero, as corroborated by the average absolute 𝑡-stat of the alphas, which stand at 2.42 for the CAPM and 1.89 for the FF-3
model.

Examining the remaining data in Table 7, which details the contribution of various factors to the 0.98% quarterly EMD premium
across different model specifications, we observe varied predictions from the HCRRA-MOM, HEZ-MOM, and the streamlined
HEZ-MOM models. These models estimate the EMD premium at 0.65%, 0.70%, and 0.63%, respectively.

In all these scenarios, factors such as cross-sectional kurtosis and changes in cross-sectional skewness and kurtosis have a minimal
impact, aligning with their previously established insignificance. However, the novel consumption factors we endorse, derived from
higher-order cross-sectional moments (like cross-sectional skewness) or Epstein–Zin preferences (such as changes in cross-sectional
variance), make substantial positive contributions to the EMD premium.

Overall, our comprehensive exploration of scenarios in Table 7 consistently highlights the pivotal role of cross-sectional skewness
and changes in cross-sectional variance in elucidating the risk premium associated with investing in emerging markets versus
developed markets. They consistently offer a positive contribution to the EMD premium. Conversely, the cross-sectional variance
factor consistently contributes negatively, underscoring its limited role in accounting for the EMD premium across the various model
specifications.

3.3.2. Estimation of the factor risk premia using alternative datasets
In this section, we evaluate the effectiveness of our proposed linear factor model specifications, applying them to alternative

international asset menus. We first focus on the 23 developed market MSCI indices, with results presented in Table 8. This table
offers results similar to those in Table 6, allowing for a direct comparison.

Upon analysis, it is apparent that the 𝑅2 values for the CCAPM, the heterogeneous-agents model specifications with the PCA-
based proxy for cross-sectional consumption risk (HCCRA and HEZ), as well as their counterparts utilizing cross-sectional variance
as the proxy (DLP and HDLP), are significantly lower when estimated solely on developed market indices. This contrasts the results
obtained in Table 6, where the models are applied across all categories of country MSCI indices.

More specifically, the 𝑅2 values for the HEZ model are reduced by approximately two-fifths, about three-fifths for the HDLP
model, and nearly four-fifths for the CCAPM, HCRRA, and DLP models.15 These reductions are noteworthy, even though factor risk
premia show strong identification, as indicated by rank test 𝑝-values of 0.02 or less. Additionally, the average absolute 𝑡-statistics
for the alphas are 1.56 or less, implying that the typical asset pricing errors are not statistically significant at the 10% level. The
HCCRA-MOM and HEZ-MOM models in Table 8 are no exception to these observations of poor performance when compared to their
versions in Table 6.

We explore the subpar performance of models on developed market MSCI indices by examining asset exposures to various factors.
Table 9 presents the statistics of factor loadings from first-step FM regressions, comparing all asset menus. Notably, the standard
deviation and range of asset betas are consistently greater for the all-inclusive asset menu than the one restricted to only developed
countries. For instance, in the HEZ model, betas on country consumption risk level and changes show standard deviations of 1.58 and
1.46 for the broader menu and 0.72 and 0.85 for developed countries. Similarly, for the HEZ-MOM model, betas on cross-sectional
variance, skewness, and changes have standard deviations of 0.52, 0.99, and 0.56 with the broader menu but reduce to 0.29, 0.49,
and 0.32 for developed countries. This heightened risk exposure diversity in the broader asset menu aligns with findings from Ang
et al. (2020) and Gagliardini et al. (2016), emphasizing the importance of a comprehensive cross-section for accurate risk premia
estimates and model efficacy.

The noticeable decline in model performance, evidenced by lower 𝑅2 values and overall statistically insignificant risk premia
estimates of consumption-based factors when estimated solely on developed country MSCI indices, underscores the pivotal role of
developing countries, such as emerging, frontier, and standalone markets. As seen in Table 9, developed countries, despite their
financial sophistication, exhibit a constrained diversity in risk exposures. This is attributed to the synchronized behavior of their

14 The consumption-based model specifications and the global CAPM have been evaluated over a longer sample period than the global Fama–French three-factor
odel, the data for which only commences from 1990Q1.
15 The relative discrepancies in performance metrics, specifically the 𝑅2 values, when comparing our results to those obtained by Darrat et al. (2011) are
oteworthy. Our calculated 𝑅2 of 9% for the CCAPM and 12% for the DLP specification fall short of the 11% and 27% respectively achieved in their study, despite
heir focus on a similar asset menu consisting of developed markets MSCI indices up to 2007Q4. However, our analysis extends to a more recent timeframe, up
o 2021Q1, encompassing a broader array of market conditions and economic events. In addition, our approach to constructing consumption factors diverges
19

rom that of Darrat et al. (2011). While they opt for GDP-weighted cross-sectional moments, we employ PPP-weighted cross-sectional moments.
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Table 8
Fama–MacBeth regressions results: Developed countries MSCI indexes.

Consumption-based Models CAPM and 3 factors Models
(1) (2) (3) (4) (5) (6) (7) (8) (9)

CC
AP

M

H
CR

RA

H
EZ DL
P

H
DL

P

H
CR

RA
-M

O
M

H
EZ

-M
O

M

CA
PM

FF
-3

𝜆0

3.13
(4.55)
[4.13]

2.70
(3.64)
[1.54]

0.25
(0.32)
[0.09]

1.62
(2.53)
[1.71]

1.90
(2.88)
[1.65]

0.91
(1.29)
[0.52]

0.63
(0.86)
[0.26]

𝜆0

1.80
(2.33)
[1.18]

1.92
(3.18)
[1.46]

𝜆aggcg
1.70

(2.54)
[2.36]

1.99
(3.57)
[1.58]

1.99
(3.68)
[1.08]

1.38
(2.37)
[1.64]

1.00
(1.47)
[0.86]

1.37
(2.99)
[1.28]

1.11
(2.59)
[0.84]

𝜆𝐶𝐴𝑃𝑀

13.79
(3.66)
[1.89]

12.98
(3.38)
[1.58]

𝜆𝑥
−2.44

(−2.47)
[−1.05]

−3.55
(−3.69)
[−1.03]

𝜆△𝑥

−2.71
(−4.03)
[−1.13]

𝜆vargcg
0.84

(0.70)
[0.48]

1.39
(1.05)
[0.62]

−3.67
(−2.60)
[−1.07]

−3.27
(−3.65)
[−1.16]

𝜆𝐻𝑀𝐿

−1.40
(−0.86)
[−0.40]

𝜆skewcg

3.87
(3.14)
[1.27]

3.38
(3.89)
[1.18]

𝜆𝑆𝑀𝐵

2.08
(1.69)
[0.83]

𝜆kurtcg

−2.07
(−0.70)
[−0.28]

−2.86
(−0.94)
[−0.28]

-

𝜆△vargcg

−2.38
(−2.04)
[−1.20]

−1.68
(−1.83)
[−0.55]

𝜆△skewcg

2.19
(4.19)
[1.44]

𝜆△kurtcg

3.32
(0.96)
[0.29]

𝑅2 45.30% 53.37% 78.35% 65.99% 69.13% 85.77% 88.03% 76.01% 75.83%
MAE 0.45 0.38 0.32 0.35 0.35 0.30 0.23 0.30 0.29
Rank test
p-value

10.30
(0.00)

1.27
(0.21)

1.25
(0.22)

3.34
(0.00)

1.54
(0.08)

1.19
(0.28)

0.09
(1.00)

219.40
(0.00)

2.85
(0.00)

Alpha test
p-value

237.52
(0.00)

14.68
(0.88)

7.86
(0.99)

120.63
(0.00)

83.20
(0.00)

25.38
(0.23)

9.04
(0.96)

62.77
(0.00)

36.52
(0.003)

Avrge.|𝑡-stat (𝛼)| 1.38 0.59 0.46 1.03 1.03 0.61 0.48 0.50 0.61

he table shows the Fama–MacBeth regressions results when the asset menu comprises the 23 developed market MSCI indices. Consumption-based factors are computed from a balanced panel of 24
eveloped and emerging country consumption data. The data frequency is quarterly for the consumption-based model specifications, and the sample period runs from 1961Q1 to 2021Q1. The data
requency is monthly for the global CAPM and the global Fama–French three-factor model, with different starting months, 1961M1 and 1990M1, respectively, and the same end month, 2021M3.
ur estimation sample is constrained by the shortest time series. The global CAPM factor is the MSCI World index excess return over the three-month U.S. Tbill rate. For each factor risk premium
stimate, the Newey–West (Shanken) 𝑡-statistics are shown in parentheses (square brackets). 𝑅2 is the r-squared from the cross-sectional regression of average excess returns on the betas. MAE is
he mean absolute pricing error. The rank test statistic is computed as in Kleibergen and Zhan (2020) and the Alpha test statistic is computed from Eq. (21). Avrge.|𝑡-stat(𝛼)| is the average absolute
hanken-adjusted Newey–West 𝑡-statistics of the pricing errors.

inancial markets, influenced by similar policy responses to economic shocks and international trade openness. Such uniformity
bscures the distinction of consumption-based factors in their MSCI indices, leading to imprecise risk premia estimates for factors.
owever, our research accentuates the importance of developing countries. These countries, deemed investable by the MSCI for

heir robust and globally accessible stock markets, are instrumental in shaping global asset pricing dynamics. Our findings imply that
hese markets react to global risk factors even when the foundational factors are derived predominantly from developed countries’
onsumption data.

Table 10 showcases estimation results for Fama–French 25 developed portfolios sorted by size and momentum. The single-factor
CAPM has a cross-sectional 𝑅2 of 45.30%, closely matching its 47.05% in the benchmark asset menu. Both HCCRA and HEZ models

ndicate weak risk premia identification, evident from their rank test 𝑝-values of 0.21 and 0.22 and further supported by the low
tandard deviations of betas in Table 9. We interpret risk premia estimates carefully, but the consistent sign with theory and the
enchmark is notable. The HEZ model explains 78.35% of cross-sectional variation with an insignificant mean absolute pricing error
f 0.32%.

In columns (4) to (7) of Table 10, robustness tests reveal inconsistencies in the DLP and HDLP models regarding the risk premium
f cross-sectional variance of country consumption growth rates. The significance of this factor becomes evident only when combined
20

ith skewness and kurtosis, as in HCRRA and HEZ models. These factors are jointly priced in line with theoretical expectations.
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Table 9
Summary statistics of the 𝛽s.

Developed All Countries 25 Fama–French PF

Statistic N Mean St. Dev. Min Max N Mean St. Dev. Min Max N Mean St. Dev. Min Max

Panel A: CCAPM

𝛽aggcg 23 1.28 0.42 0.60 1.91 69 1.34 0.60 −0.06 2.96 25 −0.64 0.34 −1.49 −0.28
𝑡𝑠𝑡𝑎𝑡(𝛽aggcg) 23 2.40 0.70 1.16 3.54 69 2.41 1.22 −0.22 7.13 25 −1.35 0.70 −2.88 −0.38

Panel B: HCRRA

𝛽aggcg 23 0.56 0.36 −0.23 1.38 69 1.09 0.66 −0.69 2.69 25 −0.73 0.36 −1.64 −0.33
𝑡𝑠𝑡𝑎𝑡(𝛽aggcg) 23 1.10 0.65 −0.29 2.66 69 1.59 1.04 −1.32 5.90 25 −1.31 0.62 −2.72 −0.44
𝛽𝑥 23 −0.85 0.73 −2.88 0.18 69 −1.16 1.53 −6.03 2.74 25 −0.32 0.14 −0.58 −0.07
𝑡𝑠𝑡𝑎𝑡(𝛽𝑥) 23 −0.97 0.76 −2.67 0.21 69 −1.08 1.13 −3.84 1.76 25 −0.44 0.18 −0.82 −0.11

Panel C: HEZ

𝛽aggcg 23 0.55 0.36 −0.23 1.35 69 1.06 0.66 −0.75 2.69 25 −0.78 0.36 −1.69 −0.38
𝑡𝑠𝑡𝑎𝑡(𝛽aggcg) 23 1.11 0.66 −0.30 2.68 69 1.56 1.07 −1.41 5.85 25 −1.49 0.67 −2.98 −0.54
𝛽𝑥 23 −0.70 0.72 −2.42 0.82 69 −0.76 1.58 −5.44 3.78 25 0.20 0.21 −0.20 0.57
𝑡𝑠𝑡𝑎𝑡(𝛽𝑥) 23 −0.81 0.73 −2.36 0.54 69 −0.68 1.14 −3.23 4.01 25 0.24 0.25 −0.22 0.75
𝛽𝛥𝑥 23 −0.45 0.85 −2.81 1.22 69 −1.01 1.46 −4.60 3.24 25 −1.49 0.33 −2.19 −1.11
𝑡𝑠𝑡𝑎𝑡(𝛽𝛥𝑥) 23 −0.39 0.76 −2.61 1.13 69 −0.65 0.94 −2.78 2.22 25 −1.57 0.45 −2.42 −0.95

Panel D: DLP

𝛽aggcg 23 1.27 0.42 0.52 2.12 69 1.50 0.81 −0.54 3.85 25 −0.03 0.43 −1.00 0.66
𝑡𝑠𝑡𝑎𝑡(𝛽aggcg) 23 2.22 0.76 1.22 4.01 69 1.93 1.04 −0.51 5.13 25 −0.01 0.51 −1.05 0.83
𝛽vargcg 23 −0.02 0.13 −0.17 0.43 69 0.10 0.38 −0.77 1.46 25 0.53 0.17 0.33 0.94
𝑡𝑠𝑡𝑎𝑡(𝛽vargcg) 23 −0.27 0.64 −1.33 0.99 69 0.20 1.07 −3.21 3.63 25 1.56 0.48 0.94 2.41

Panel E: HDLP

𝛽aggcg 23 1.23 0.44 0.49 2.12 69 1.35 0.81 −0.71 3.87 25 0.02 0.43 −0.92 0.71
𝑡𝑠𝑡𝑎𝑡(𝛽aggcg) 23 2.14 0.79 0.87 3.98 69 1.74 1.08 −0.64 5.22 25 0.06 0.53 −1.01 0.92
𝛽vargcg 23 0.06 0.20 −0.14 0.85 69 0.27 0.44 −0.68 1.50 25 0.44 0.18 0.25 0.86
𝑡𝑠𝑡𝑎𝑡(𝛽vargcg) 23 0.10 0.56 −0.77 1.76 69 0.64 1.12 −1.71 5.61 25 1.16 0.47 0.52 1.99
𝛽𝛥vargcg 23 −0.26 0.32 −1.23 0.15 69 −0.57 0.52 −1.70 0.42 25 0.21 0.07 0.08 0.40
𝑡𝑠𝑡𝑎𝑡(𝛽𝛥vargcg) 23 −0.89 1.63 −7.90 0.39 69 −2.02 2.69 −14.37 1.90 25 0.68 0.23 0.28 1.14

Panel F: HCRRA-MOM

𝛽aggcg 23 1.34 0.43 0.56 2.14 69 1.57 0.82 0.09 4.15 25 0.31 0.40 −0.58 1.00
𝑡𝑠𝑡𝑎𝑡(𝛽aggcg) 23 2.35 0.79 1.04 4.10 69 1.91 1.12 0.23 5.10 25 0.45 0.49 −0.62 1.22
𝛽vargcg 23 0.08 0.18 −0.13 0.58 69 0.22 0.33 −0.55 1.72 25 0.79 0.20 0.56 1.27
𝑡𝑠𝑡𝑎𝑡(𝛽vargcg) 23 0.23 0.63 −0.68 1.64 69 0.57 1.11 −2.80 5.03 25 2.60 0.54 1.86 3.89
𝛽skewcg 23 0.82 0.47 0.02 1.90 69 1.24 0.92 −0.81 3.53 25 0.83 0.26 0.51 1.39
𝑡𝑠𝑡𝑎𝑡(𝛽skewcg) 23 1.62 0.78 0.05 3.64 69 1.67 1.05 −0.68 4.05 25 2.49 0.55 1.70 3.54
𝛽kurtcg 23 −0.08 0.15 −0.51 0.25 69 −0.08 0.26 −0.74 0.70 25 −0.19 0.05 −0.30 −0.10
𝑡𝑠𝑡𝑎𝑡(𝛽kurtcg) 23 −0.53 0.84 −2.37 1.35 69 −0.28 1.19 −2.37 4.38 25 −1.72 0.54 −2.72 −0.90

Panel G: HEZ-MOM

𝛽aggcg 23 1.35 0.42 0.55 2.15 69 1.57 0.95 −0.34 4.40 25 0.25 0.40 −0.65 0.93
𝑡𝑠𝑡𝑎𝑡(𝛽aggcg) 23 2.37 0.80 1.16 4.18 69 1.98 1.34 −0.84 6.30 25 0.41 0.53 −0.69 1.28
𝛽vargcg 23 0.17 0.29 −0.10 1.06 69 0.47 0.52 −0.45 1.82 25 0.52 0.18 0.31 0.97
𝑡𝑠𝑡𝑎𝑡(𝛽vargcg) 23 0.62 0.95 −0.45 4.32 69 1.14 1.54 −1.46 10.64 25 1.54 0.56 0.74 2.72
𝛽skewcg 23 0.82 0.49 0.06 1.87 69 1.30 0.99 −0.93 3.84 25 0.37 0.21 0.01 0.76
𝑡𝑠𝑡𝑎𝑡(𝛽skewcg) 23 1.46 0.87 0.12 3.79 69 1.56 1.06 −1.21 4.11 25 0.99 0.53 0.03 2.03
𝛽kurtcg 23 −0.19 0.16 −0.68 0.04 69 −0.24 0.33 −0.95 0.96 25 −0.12 0.03 −0.19 −0.06
𝑡𝑠𝑡𝑎𝑡(𝛽kurtcg) 23 −1.26 1.09 −5.07 0.22 69 −0.88 1.26 −5.07 4.30 25 −1.03 0.28 −1.65 −0.66
𝛽𝛥vargcg 23 −0.28 0.32 −1.22 0.05 69 −0.59 0.56 −2.14 0.38 25 0.45 0.10 0.25 0.64
𝑡𝑠𝑡𝑎𝑡(𝛽𝛥vargcg) 23 −1.00 1.69 −7.98 0.13 69 −2.11 2.81 −18.05 2.23 25 1.54 0.33 0.98 2.21
𝛽𝛥skewcg 23 0.10 0.48 −0.79 0.86 69 −0.07 1.05 −2.90 2.90 25 1.16 0.27 0.79 1.73
𝑡𝑠𝑡𝑎𝑡(𝛽𝛥skewcg) 23 0.17 0.84 −1.41 1.40 69 −0.11 1.08 −2.71 1.86 25 1.74 0.57 0.81 2.80
𝛽𝛥kurtcg 23 0.26 0.11 0.12 0.54 69 0.31 0.32 −0.51 1.26 25 −1.03 0.28 −1.65 −0.66
𝑡𝑠𝑡𝑎𝑡(𝛽𝛥kurtcg) 23 1.77 0.54 0.90 2.83 69 1.40 1.13 −1.80 3.58 25 −0.88 0.30 −1.65 −0.47

Panel H: HEZ-MOM (Parsimonious)

𝛽aggcg 69 1.36 0.79 −0.56 3.92
𝑡𝑠𝑡𝑎𝑡(𝛽aggcg) 69 1.81 1.10 −0.57 5.53
𝛽vargcg 69 0.35 0.41 −0.50 1.65
𝑡𝑠𝑡𝑎𝑡(𝛽vargcg) 69 0.93 1.22 −1.70 6.73
𝛽skewcg 69 1.21 0.99 −1.36 3.92

(continued on next page)
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Table 9 (continued).
𝑡𝑠𝑡𝑎𝑡(𝛽skewcg) 69 1.62 1.15 −2.20 4.41
𝛽𝛥vargcg 69 −0.53 0.50 −1.64 0.44
𝑡𝑠𝑡𝑎𝑡(𝛽𝛥vargcg) 69 −2.00 3.00 −19.67 1.84

This table shows the summary statistics of risk exposures to consumption factors (𝛽s). 𝛽s are obtained from the time series regressions of return on consumption
factors. These betas correspond to models and risk prices estimated in Tables 6, 8, and 10.

Table 10
Fama–MacBeth regressions results: Fama–French 25 developed portfolios.

Consumption-based Models CAPM and 3 factors Models
(1) (2) (3) (4) (5) (6) (7) (8) (9)

CC
AP

M

H
CR

RA

H
EZ DL
P

H
DL

P

H
CR

RA
-M

O
M

H
EZ

-M
O

M

CA
PM

FF
-3

𝜆0

3.13
(4.55)
[4.13]

2.70
(3.64)
[1.54]

0.25
(0.32)
[0.09]

1.62
(2.53)
[1.71]

1.90
(2.88)
[1.65]

0.91
(1.29)
[0.52]

0.63
(0.86)
[0.26]

𝜆0

1.80
(2.33)
[1.18]

1.92
(3.18)
[1.46]

𝜆aggcg
1.70

(2.54)
[2.36]

1.99
(3.57)
[1.58]

1.99
(3.68)
[1.08]

1.38
(2.37)
[1.64]

1.00
(1.47)
[0.86]

1.37
(2.99)
[1.28]

1.11
(2.59)
[0.84]

𝜆𝐶𝐴𝑃𝑀

13.79
(3.66)
[1.89]

12.98
(3.38)
[1.58]

𝜆𝑥
−2.44

(−2.47)
[−1.05]

−3.55
(−3.69)
[−1.03]

𝜆△𝑥

−2.71
(−4.03)
[−1.13]

𝜆vargcg
0.84

(0.70)
[0.48]

1.39
(1.05)
[0.62]

−3.67
(−2.60)
[−1.07]

−3.27
(−3.65)
[−1.16]

𝜆𝐻𝑀𝐿

−1.40
(−0.86)
[−0.40]

𝜆skewcg

3.87
(3.14)
[1.27]

3.38
(3.89)
[1.18]

𝜆𝑆𝑀𝐵

2.08
(1.69)
[0.83]

𝜆kurtcg

−2.07
(−0.70)
[−0.28]

−2.86
(−0.94)
[−0.28]

-

𝜆△vargcg

−2.38
(−2.04)
[−1.20]

−1.68
(−1.83)
[−0.55]

𝜆△skewcg

2.19
(4.19)
[1.44]

𝜆△kurtcg

3.32
(0.96)
[0.29]

𝑅2 45.30% 53.37% 78.35% 65.99% 69.13% 85.77% 88.03% 76.01% 75.83%
MAE 0.45 0.38 0.32 0.35 0.35 0.30 0.23 0.30 0.29
Rank test
p-value

10.30
(0.00)

1.27
(0.21)

1.25
(0.22)

3.34
(0.00)

1.54
(0.08)

1.19
(0.28)

0.09
(1.00)

219.40
(0.00)

2.85
(0.00)

Alpha test
p-value

237.52
(0.00)

14.68
(0.88)

7.86
(0.99)

120.63
(0.00)

83.20
(0.00)

25.38
(0.23)

9.04
(0.96)

62.77
(0.00)

36.52
(0.003)

Avrge.|𝑡-stat (𝛼)| 1.38 0.59 0.46 1.03 1.03 0.61 0.48 0.50 0.61

he table shows the Fama–MacBeth regressions results when the asset menu comprises the Fama–French 25 developed portfolios. Consumption-based factors are computed from a balanced panel of
4 developed and emerging country consumption data. The data frequency is quarterly for the consumption-based model specifications, and the sample period runs from 1961Q1 to 2021Q1. The
ata frequency is monthly for the global CAPM and the global Fama–French three-factor model, with different starting months, 1961M1 and 1990M1, respectively, and the same end month, 2021M3.
ur estimation sample is constrained by the shortest time series. The global CAPM factor is the MSCI World index excess return over the three-month U.S. Tbill rate. The Newey–West (Shanken)

-statistics are shown in parentheses (square brackets). 𝑅2 is the r-squared from the cross-sectional regression of average excess returns on the betas. MAE is the mean absolute pricing error. The rank
est statistic is computed as in Kleibergen and Zhan (2020) and the Alpha test statistic is computed from Eq. (21). Avrge.|𝑡-stat(𝛼)| is the average absolute Shanken-adjusted Newey–West 𝑡-statistics
f the pricing errors.

he alternative asset menu displays higher 𝑅2 values and lower mean absolute errors than the benchmark. Although Newey–West
-statistics confirm significance, Shanken 𝑡-statistics are lower than the benchmark. Our findings validate the heterogeneous-agents
onsumption-based model’s implications for international portfolios.

The high cross-sectional 𝑅2 from the Fama–French 25 developed portfolios may raise potential concerns. We recognize that,
s Lewellen et al. (2010) pointed out, portfolios with a strong factor structure can naturally yield high 𝑅2 values since factor
oadings can align with expected returns, provided there is a weak correlation with common factors. While accepting this critique,
ur inclusion of these portfolios serves three-fold: they offer a conventional comparison framework, emphasize the robustness and
22

ignificance of our model, and contrast with our primary 69-country MSCI indices to demonstrate our model’s adaptability across
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diverse datasets. While valuing the contextual insights of the Fama–French portfolios, our primary focus remains on the broader
MSCI indices, underscoring our model’s empirical prowess.

4. Conclusion

Our article delves into international asset pricing using a framework of heterogeneous agents, aiming to bridge the gap between
ountry-specific consumption shocks and global stock market investment strategies. Our primary goal was to understand the
ariability of expected returns across different national stock indices and assess whether these returns adequately account for the
isks in the global consumption-based asset pricing model with heterogeneous agents.

Our research has revealed several key findings. Firstly, our model received robust support through GMM testing, providing
ignificant parameter estimates that are both statistically and economically meaningful. By applying the heterogeneous-agents asset
ricing model on an international scale, we gained more profound insights into the significance of global equities.

Our study has significant economic implications. The risk premiums we identified, particularly those related to cross-sectional
onsumption risk levels and changes, have substantial economic importance, especially considering the average risk premium across
he MSCI indices.

We differentiate our work from previous studies by emphasizing the relevance of Epstein–Zin’s recursive utility and the
onditional non-normality of agents’ idiosyncratic shocks. These aspects enhance our understanding by incorporating the pricing
f changes in cross-sectional consumption risk and leveraging insights from cross-sectional higher-order moments, moving beyond
he traditional focus on cross-sectional variance. Factors like cross-sectional skewness, previously overlooked, gain prominence,
nderscoring their importance in the model’s explanatory power.

Furthermore, our detailed analysis of emerging versus developed markets reinforces that investments in emerging markets come
ith elevated risks. Our innovative approach, particularly the PCA-based proxy for cross-sectional consumption risk, provides a
eeper understanding of observed premiums, making a novel contribution to academic discourse.

From a practical standpoint, investors and policymakers should consider the heterogeneity of consumption shocks when
valuating international investment opportunities and crafting investment strategies. As factors like cross-sectional skewness emerge
s significant in our study, financial professionals should expand their risk assessment tools beyond traditional metrics. For countries
eeking to attract international investments, understanding the drivers of risk premiums in their stock indices can be pivotal in
haping policies to stabilize consumption growth and mitigate extreme consumption shocks.

The limited identification of consumption-based factors in developed countries presents opportunities for further research. Future
tudies could delve into the intricacies of these markets, potentially examining disaggregated stocks or mutual funds. Additionally,
xploring how global economic events, such as recessions, impact the parameters of the heterogeneous-agents consumption-based
sset pricing model could be a fruitful area of investigation. Given our model’s robust incorporation of Epstein–Zin preferences,
tudying how these preferences evolve over time and under different economic conditions holds significant academic value.

RediT authorship contribution statement

Roméo Tédongap: Conceptualization, Supervision, Validation, Writing – review & editing. Jules Tinang: Methodology, Data
curation, Empirical investigation, Writing – original draft.

Appendix A. Derivation of the cross-sectional moments of consumption growth

The derivation of the cross-sectional moments of the consumption growth distribution closely follows Constantinides and Ghosh
(2017). This derivation uses the following identity:

𝑒−𝜔
∞
∑

𝑘=0
𝑒𝑘𝑛𝜔𝑛∕𝑛! = 𝑒−𝜔

∞
∑

𝑘=0

(

𝑒𝑘𝜔
)𝑛 ∕𝑛! = 𝑒−𝜔𝑒𝑒

𝑘𝜔. (A.1)

Differentiating one, two, three, and four times with respect to 𝑘 and setting 𝑘 = 0, we obtain:

𝑒−𝜔
∞
∑

𝑘=0
𝑛𝜔𝑛∕𝑛! = 𝜔 and 𝑒−𝜔

∞
∑

𝑘=0
𝑛2𝜔𝑛∕𝑛! = 𝜔2 + 𝜔,

𝑒−𝜔
∞
∑

𝑘=0
𝑛3𝜔𝑛∕𝑛! = 𝜔3 + 3𝜔2 + 𝜔 and 𝑒−𝜔

∞
∑

𝑘=0
𝑛4𝜔𝑛∕𝑛! = 𝜔4 + 6𝜔3 + 7𝜔2 + 𝜔.

The country relative consumption growth following Eq. (3) is given by:

cg𝑖,𝑡 = ln
(

𝐶𝑖,𝑡∕𝐶𝑡
𝐶𝑖,𝑡−1∕𝐶𝑡−1

)

= ln
(

ℎ𝑖,𝑡
)

− ln
(

ℎ𝑖,𝑡−1
)

=
(

𝜂𝑖,𝑡𝜎
√

𝑗𝑖,𝑡 − 𝜎2
𝑗𝑖,𝑡
2

)

+

(

𝜂̃𝑖,𝑡𝜎̃
√

𝑗𝑖,𝑡 − 𝜎̃2
𝑗𝑖,𝑡
2

)

.
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Thus, the conditional cross-sectional first to fourth cumulants obtain as follows:

meancg𝑡 = 𝜇1
[

cg𝑖,𝑡|𝜔𝑡
]

= E

[

(

𝜂𝑖,𝑡𝜎
√

𝑗𝑖,𝑡 − 𝜎2
𝑗𝑖,𝑡
2

)

+

(

𝜂̃𝑖,𝑡𝜎̃
√

𝑗𝑖,𝑡 − 𝜎̃2
𝑗𝑖,𝑡
2

)

|𝜔𝑡

]

= E

[

E

[

(

𝜂𝑖,𝑡𝜎
√

𝑗𝑖,𝑡 − 𝜎2
𝑗𝑖,𝑡
2

)

+

(

𝜂̃𝑖,𝑡𝜎̃
√

𝑗𝑖,𝑡 − 𝜎̃2
𝑗𝑖,𝑡
2

)

|𝑗𝑖,𝑡, 𝑗𝑖,𝑡

]

|𝜔𝑡

]

= −𝜎
2

2
𝜔𝑡 −

𝜎̃2

2
𝜔̃

(A.2)

vargcg𝑡 = 𝜇2
[

cg𝑖,𝑡|𝜔𝑡
]

= E
⎡

⎢

⎢

⎣

(

(

𝜂𝑖,𝑡𝜎
√

𝑗𝑖,𝑡 − 𝜎2
𝑗𝑖,𝑡
2

)

+

(

𝜂̃𝑖,𝑡𝜎̃
√

𝑗𝑖,𝑡 − 𝜎̃2
𝑗𝑖,𝑡
2

))2

|𝜔𝑡
⎤

⎥

⎥

⎦

= E
⎡

⎢

⎢

⎣

E
⎡

⎢

⎢

⎣

(

(

𝜂𝑖,𝑡𝜎
√

𝑗𝑖,𝑡 − 𝜎2
𝑗𝑖,𝑡
2

)

+

(

𝜂̃𝑖,𝑡𝜎̃
√

𝑗𝑖,𝑡 − 𝜎̃2
𝑗𝑖,𝑡
2

))2

|𝑗𝑖,𝑡, 𝑗𝑖,𝑡
⎤

⎥

⎥

⎦

|𝜔𝑡
⎤

⎥

⎥

⎦

=
(

𝜎2 + 𝜎4

4

)

𝜔𝑡 +
(

𝜎̃2 + 𝜎̃4

4

)

𝜔̃

(A.3)

skewcg𝑡 = 𝜇3
[

cg𝑖,𝑡|𝜔𝑡
]

= E
⎡

⎢

⎢

⎣

(

(

𝜂𝑖,𝑡𝜎
√

𝑗𝑖,𝑡 − 𝜎2
𝑗𝑖,𝑡
2

)

+

(

𝜂̃𝑖,𝑡𝜎̃
√

𝑗𝑖,𝑡 − 𝜎̃2
𝑗𝑖,𝑡
2

))3

|𝜔𝑡
⎤

⎥

⎥

⎦

= E
⎡

⎢

⎢

⎣

E
⎡

⎢

⎢

⎣

(

(

𝜂𝑖,𝑡𝜎
√

𝑗𝑖,𝑡 − 𝜎2
𝑗𝑖,𝑡
2

)

+

(

𝜂̃𝑖,𝑡𝜎̃
√

𝑗𝑖,𝑡 − 𝜎̃2
𝑗𝑖,𝑡
2

))3

|𝑗𝑖,𝑡, 𝑗𝑖,𝑡
⎤

⎥

⎥

⎦

|𝜔𝑡
⎤

⎥

⎥

⎦

= −
( 3
2
𝜎4 + 1

8
𝜎6

)

𝜔𝑡 −
( 3
2
𝜎̃4 + 1

8
𝜎̃6

)

𝜔̃

(A.4)
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(A.5)

We can now compute the unconditional first and second moments of cross-sectional consumption growth cumulants, i.e., their
ean, variance and first-order autocovariance as functions of the model parameters.

The unconditional moments of the cross-sectional variance of consumption growth is given by:
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(A.6)

the unconditional moments of the cross-sectional skewness of consumption growth is given by:
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(A.7)
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the unconditional moments of the cross-sectional kurtosis of consumption growth is given by:
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where
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and where E
[

𝑥𝑡
]

, var
[

𝑥𝑡
]

, and ac1
[

𝑥𝑡
]

are given in Eq. (7).

Appendix B. Derivation of the wealth-to-consumption ratio

Constantinides and Ghosh (2017) show that the equilibrium consumption dynamics and preferences correspond to an autarchy
equilibrium where each country representative’s valuation of any security other than her individual consumption’s claim, is the
same. The common SDF for all agents is obtained by integrating out the country’s consumption growth idiosyncratic shocks. To
compute the common SDF, it is assumed that the wealth-to-consumption ratio is common to all agents and is an affine function of
the state variable:

𝑧𝑖,𝑐,𝑡 = 𝑧𝑐,𝑡 = 𝐴0 + 𝐴1𝑥𝑡. (B.1)

Using the Campbell and Shiller (1988) approximation, the log-return on the investor’s wealth portfolio can be expressed as follows:

𝑟𝑖,𝑐,𝑡+1 = 𝑞0 + 𝑞1𝑧𝑐,𝑡+1 − 𝑧𝑐,𝑡 + 𝛥𝑐𝑖,𝑡+1, (B.2)

where the log-linearization coefficients 𝑞0 and 𝑞1 are endogenous. These coefficients are obtained simultaneously with the wealth-
to-consumption ratio coefficients 𝐴0 and 𝐴1 in Eq. (B.1), by solving a non-linear equation system and a fixed point problem that
determines the average wealth-to-consumption ratio 𝑧̄𝑐 . All things together lead to the following system:
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(B.3)

Appendix C. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jempfin.2023.101459.
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