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Abstract

In an intertemporal equilibrium asset pricing model featuring disappointment aversion

and changing macroeconomic uncertainty, we show that besides the market return and

market volatility, three disappointment-related factors are also priced: a disappoint-

ment factor, a market downside factor, and a volatility downside factor. We find that

expected returns on different asset classes reflect premiums for bearing undesirable ex-

posures to these factors. The signs of estimated risk premiums are consistent with the

theoretical predictions. Our most general, five-factor model is very successful in jointly

pricing stock, option, and currency portfolios, and provides considerable improvement

over nested specifications previously discussed in the literature.
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1 Introduction

Downside risk is the risk of a portfolio in case of an adverse economic scenario. Upside un-

certainty is the analogue if the scenario is favorable. The asymmetric treatment of downside

risk versus upside uncertainty by investors has long been accepted among practitioners and

academic researchers (see, e.g., Roy, 1952; and Markowitz, 1959), and has led to the devel-

opment of new concepts in asset pricing and risk management, like the value-at-risk and the

expected shortfall. Also, theories of rational behavior have been developed, where investors

place greater weights on adverse market conditions in their utility functions. These include

the lower-partial moment framework of Bawa and Lindenberg (1977), the loss aversion of

Kahneman and Tversky (1979) in their prospect theory, and the disappointment aversion

of Gul (1991), which has recently been generalized by Routledge and Zin (2010). These

theories suggest priced downside risks in the capital market equilibrium.

We derive and test the cross-sectional predictions of a consumption-based asset pricing

model where the representative investor has generalized disappointment aversion (GDA)

preferences and macroeconomic uncertainty is time-varying. In this setting, an investor with

expected utility preferences requires two premiums to invest in an asset. The first one is

a compensation for covariation with the market return, Cov (Re
i , rW ), which is line with

the prediction of the CAPM. The second premium is a compensation for covariation with

changes in market volatility, Cov (Re
i ,∆σ

2
W ). It has been shown by previous empirical studies

that volatility risk is priced in the cross-section (see, e.g., Ang et al., 2006; and Adrian and

Rosenberg, 2008).

Our main theoretical contribution is to show that the GDA investor requires three addi-

tional premiums as compensation for exposures to disappointment-related risk factors. The

first is a compensation for the covariance with the disappointment factor, Cov (Re
i , I (D)),
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where I (D) is the indicator function that takes the value 1 if disappointment sets in and 0

otherwise. The model suggests that disappointment (D) may set in due to two reasons: a fall

in market return or a rise in market volatility. The second premium is a compensation for

the covariance of asset returns with the interaction of the market return and the disappoint-

ment indicator, Cov (Re
i , rW I (D)). This factor represents movements of the market return

in disappointing states and we refer to it as the market downside factor. The third premium

is a compensation for the covariance with the interaction of changes in market volatility and

the disappointment indicator, Cov (Re
i ,∆σ

2
W I (D)). This factor represents changes in market

volatility in disappointing states, hence we refer to it as the volatility downside factor.

In the general case, our setting thus leads to a five-factor model. Although there are

five factors in the model, only two time series, the market return rW and changes in market

volatility ∆σ2
W are needed to construct these factors. The disappointment factor is con-

structed as a function of these two series, and the two downside factors are just interactions

with the disappointment indicator. We also show that if the representative investor has infi-

nite elasticity of intertemporal substitution, then market volatility has no role in the model,

and the disappointing event reduces to a fall of the market return below a reference threshold.

This special case corresponds to a three-factor model with the market, the disappointment,

and the market downside factors. The three-factor model is especially important when we

relate our results to previous literature.

The cross-sectional implications of downside risk has already been studied in previous

literature, most notably by Ang, Chen and Xing (2006) and Lettau et al. (2014). We

show that our three-factor model nests the models from both of these studies, with different

restrictions on the premium corresponding to the disappointment factor. We explicitly derive

these restrictions and confront them with the data. Our results suggest that the restrictions
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imposed by the downside risk models of Ang, Chen and Xing (2006) and Lettau et al.

(2014) are not supported empirically. Therefore, our three-factor model provides considerable

improvement in explaining the cross-section of different asset returns, even though all three

models use exactly the same information. Additionally, the five-factor model emphasizes the

role of volatility in understanding downside risks. To our knowledge, little or no attention has

been paid to volatility downside risk in the literature. We argue that volatility downside risk

is also an important factor in explaining the cross-section of asset returns, as the five-factor

model provides further improvement compared to the three-factor model.

We use the generalized methods of moments (GMM) to explore the cross-sectional pre-

dictions of our three- and five-factor models. Our test assets are stock portfolios sorted on

size and momentum, index option portfolios sorted on type, maturity, and moneyness, and

currency portfolios sorted on their respective interest rates. These portfolios exhibit large

heterogeneity in their average returns and thus are ideal for cross-sectional asset pricing tests.

The main empirical results of the paper relate to the pricing of the disappointment-related

risk factors.

All the disappointment-related factors have significant risk premiums and the signs on all

the risk prices are in line with the theoretical predictions. In terms of pricing errors, when

tested on all asset classes jointly, our three-factor model with a root-mean-squared pricing

error (RMSPE) of 19 basis points (bps) per month provides a significant improvement over

the CAPM with a RMSPE of 49bps. The corresponding pricing errors of the downside

risk models of Ang, Chen and Xing (2006) (27bps) and Lettau et al. (2014) (31bps) are

considerably higher than that of the three-factor model. Our five-factor model, with a

RMSPE of 13bps, largely outperforms a two-factor model with market return and changes

in market volatility with a RMSPE of 27bps. Moreover, the five-factor GDA model also
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outperforms the four-factor model of Carhart (1997) on all asset classes except for stocks

where the four-factor model does only marginally better. However, the GDA model has

the benefit of being motivated by dynamic consumption-based equilibrium asset pricing

and behavioral decision theories, rather than being motivated by asset pricing anomalies

themselves. These findings suggest the importance of disappointment-related risk in the

cross-section of asset returns. Our results are robust to different data samples, to alternative

measures of market volatility, and to alternative specifications of the disappointing event.

This paper contributes to the developing literature that attempts to provide empirical

support for the recent generalization by Routledge and Zin (2010) of the axiomatic dis-

appointment aversion framework of Gul (1991). In the literature, GDA preferences have

appeared in consumption-based equilibrium models mainly with the goal of attempting to

explain the time series behavior of the aggregate stock market, and rarely in cross-sectional

asset pricing studies.1 Parallel to our study, Delikouras (2014a) also uses GMM to test a

consumption-based model with GDA preferences using annual consumption data and six

Fama-French portfolios sorted on size and book-to-market. He motivates the use of annual

data by potential inaccuracies and measurement errors in consumption data that are inher-

ent to monthly and quarterly samples. In contrast, we substitute out consumption in a way

similar to Campbell (1993), and rely on the market return. We also derive cross-sectional

implications in the form of a factor model, and find it useful to explicitly characterize factors

that are valued by disappointment averse investors. We can then avoid potential measure-

ment problems in consumption data (of the types advocated for example by Wilcox, 1992),

1For instance, Bonomo et al. (2011) show that persistent shocks to consumption volatility are sufficient
when coupled with GDA preferences to produce moments of asset prices and predictability patterns that are
in line with the data. Schreindorfer (2014) aims at explaining properties of index option prices, equity returns,
variance, and the risk-free rate using the GDA model and a heteroscedastic random walk for consumption
with the multifractal process of Calvet and Fisher (2007). Delikouras (2014b) uses the GDA model to explain
the credit spread puzzle.
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or delayed responses of consumption to financial market news (as discussed for example by

Parker and Julliard, 2005), and test the model at the monthly frequency using market return

data.

To the contrary of Delikouras (2014a) who assumes constant volatility of aggregate con-

sumption, our setting also implicitly allows for time-varying macro-economic uncertainty,

a feature that is supported empirically (see for example Bansal et al., 2005). Relying on

market return rather than consumption also makes our results directly comparable to recent

cross-sectional studies on downside risks such as Ang, Chen and Xing (2006) and Lettau

et al. (2014). Finally, because of the kink in the GDA utility function, estimation and infer-

ence problems may occur due to strong nonlinearities and discontinuity inherent to the GDA

model, and due to endogeneity of the disappointment-related factors. To avoid these prob-

lems, we do not estimate the original preference parameters directly, but instead, we specify

the disappointing event exogenously and estimate the cross-sectional factor risk premiums

which are functions of these parameters.

The rest of the paper is organized as follows. In Section 2, we present and develop the

theoretical setup from which we derive the implied cross-sectional model. In Section 3, we

provide a calibration analysis of the model benchmarked to Bonomo et al. (2011). Section 4

contains the empirical analysis while Section 5 concludes. An Online Appendix available

from authors’ web pages contains additional material and proofs.
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2 Theoretical motivation

2.1 Assumptions on investors’ preferences

Following Epstein and Zin (1989) and Weil (1989), we consider an economy where the rep-

resentative investor has recursive utility:

Vt =


[
(1− δ)C

1− 1
ψ

t + δ [Rt (Vt+1)]
1− 1

ψ

] 1

1− 1
ψ

if ψ > 0 and ψ 6= 1

C1−δ
t [Rt (Vt+1)]

δ if ψ = 1

, (2)

where 0 < δ < 1 is the parameter of time preference and ψ > 0 is the elasticity of in-

tertemporal substitution. The current period lifetime utility, Vt, is a function of the current

consumption, Ct, and the certainty equivalent of next period’s lifetime utility, Rt (Vt+1).

Routledge and Zin (2010) introduce generalized disappointment aversion (GDA) into this

framework by assuming that the certainty equivalent R is implicitly defined by

U (R) = E [U (V )]− `E [(U (κR)− U (V )) I (V < κR)] , (3)

with

U (X) =


X1−γ−1

1−γ if γ > 0 and γ 6= 1

lnX if γ = 1

, (4)

where the parameter γ ≥ 0 is the coefficient of relative risk aversion. When ` is equal

to zero, R reduces to expected utility (EU) preferences and Vt represents the Epstein and

Zin (1989) recursive utility. GDA preferences are a two-parameter extension of the EU

framework. When ` > 0, outcomes lower than κR receive an extra weight, decreasing the
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certainty equivalent. The larger weight given to these bad outcomes implies an aversion to

losses. The parameter ` ≥ 0 is interpreted as the degree of disappointment aversion, while

the parameter 0 < κ ≤ 1 is the percentage of the certainty equivalent such that outcomes

below it are considered disappointing. The special case κ = 1 corresponds the original

disappointment aversion preferences of Gul (1991).

The investor maximizes the lifetime utility Vt, subject to the budget constraint

Wt+1 = (Wt − Ct)RW,t+1 , (5)

where Wt is the wealth in period t and RW,t+1 is the simple gross return on wealth which we

refer to as the market return. Following Hansen et al. (2007) and Routledge and Zin (2010),

consumption and portfolio choice induces an equilibrium restriction on the gross return on

any asset, given by the unconditional Euler equation:

E
[
Mt−1,t (1 + `I (Dt))Re

i,t

]
= 0 , (6)

where Re
i,t = Ri,t−Rf,t is the excess return of asset i, Rf,t is the risk-free simple gross return,

I (·) denotes the indicator function taking the value 1 if the condition is met and 0 otherwise,

and

Mt−1,t = δ

(
Ct
Ct−1

)− 1
ψ
(

Vt
Rt−1 (Vt)

) 1
ψ
−γ

and Dt = {Vt < κRt−1 (Vt)} , (7)

where Mt−1,t is the stochastic discount factor between periods t − 1 and t, and Dt denotes

the disappointing event. The logarithm of Mt−1,t and Dt may be written as

lnMt−1,t = ln δ − γ∆ct −
(
γ − 1

ψ

)
∆zV,t and Dt = {∆ct + ∆zV,t < lnκ} , (8)
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where ∆ct ≡ ln
(

Ct
Ct−1

)
= lnCt − lnCt−1 and ∆zV,t ≡ ln

(
Vt
Ct

)
− ln

(
Rt−1(Vt)
Ct−1

)
represent

the change in the log consumption level (or consumption growth) and the change in the log

welfare valuation ratio (or welfare valuation ratio growth), respectively.

In some special cases such as ` = 0 and γ = 1/ψ, the moment condition (6) is readily

testable by GMM using actual data on aggregate consumption growth and asset returns.

Earlier results for this test of the standard model are presented in Hansen and Singleton

(1982, 1983). In the general case, the moment condition (6) is not directly testable by

GMM since the continuation value is not observable from the data. Following the long-run

risks asset pricing literature pioneered by Bansal and Yaron (2004), an assumed endowment

dynamics can be exploited, together with the utility recursion (2) and the certainty equivalent

definition (3), to express welfare valuation ratios in terms of economic state variables such

as aggregate volatility, which may be estimated from the data.

2.2 Cross-sectional implications of GDA preferences

In order to obtain the cross-sectional implications that form the basis of our empirical inves-

tigation, we make two substitutions. First we substitute out consumption growth following

Epstein and Zin (1989), Hansen et al. (2007) and Routledge and Zin (2010) who show that in

equilibrium, the market return, is related to consumption growth and the welfare valuation

ratio growth through

rW,t = − ln δ + ∆ct +

(
1− 1

ψ

)
∆zV,t . (9)

Second, assuming that aggregate consumption growth is heteroscedastic and unpredictable

as in Bollerslev et al. (2009), Tauchen (2011) and Bonomo et al. (2011), and consistent with

the empirical evidence presented in Beeler and Campbell (2012) among many others, we can
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solve for the welfare valuation ratio endogenously and express the welfare valuation ratio

growth, ∆zV,t, in terms of changes in the volatility of the market return, which we refer to

as market volatility.

Making these substitutions, and after some algebraic manipulation, the Euler equation

in (6) may be written as a cross-sectional linear factor model2

E
[
Re
i,t

]
= pWσiW + pXσiX + pDσiD + pWDσiWD + pXDσiXD , (10)

where

σiW ≡ Cov
(
Re
i,t, rW,t

)
σiX ≡ Cov

(
Re
i,t,∆σ

2
W,t

)
σiD ≡ Cov

(
Re
i,t, I (Dt)

)
σiWD ≡ Cov

(
Re
i,t, rW,tI (Dt)

)
σiXD ≡ Cov

(
Re
i,t,∆σ

2
W,tI (Dt)

)
.

(11)

The covariance risk prices pW > 0, pX < 0, pD < 0, pWD > 0, and pXD < 0 are functions of

the preference parameters δ, γ, ψ, ` and κ, as well as functions of the parameters governing

the endowment dynamics. Let us have a detailed look at the signs of the covariance risk

prices. First, as pW > 0, investors require a premium for a security that has positive covari-

ance with the market return. This is in line with the CAPM theory of Sharpe (1964) and

Lintner (1965). The second risk price is pX < 0, thus, investors are willing to pay a premium

for a security that has positive covariance with ∆σ2
W,t. This is consistent with the existing

empirical literature (see, e.g., Ang, Hodrick, Xing and Zhang, 2006; Adrian and Rosenberg,

2The details of the derivation are outlined in the Online Appendix.
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2008). The third risk price is pD < 0, showing that disappointment-averse investors are will-

ing to pay a premium for a security that has positive covariance with the I (Dt) factor. Such

an asset tends to move upward when the disappointing event occurs. Letting π denote the

disappointment probability, note that Cov
(
Re
i,t, I (Dt)

)
= π

(
E
[
Re
i,t | Dt

]
− E

[
Re
i,t

])
. That

is, assets with σiD < 0 are undesirable because they have lower expected payoffs than usual

when disappointment sets in. The fourth factor in (10) is rW,tI (Dt). It represents changes in

market return when the economy is in the disappointing state. We refer to it as the market

downside factor throughout the paper. The associated risk price is positive. Investors require

a premium for a security that has positive covariance with rW,tI (Dt), since such an asset

tends to have a negative return when there is a low market return in a disappointing state.

The fifth and final factor is ∆σ2
W,tI (Dt), representing changes in market volatility when the

economy is in the disappointing state. We subsequently refer to it as the volatility downside

factor. The associated risk price is negative. Investors are willing to pay a premium for a

security that has positive covariance with the volatility downside factor. Such an asset tends

to have positive returns when market volatility increases in a disappointing state.

We also show that the disappointing event may be written as

Dt =
{
rW,t − a (σW/σX) ∆σ2

W,t < b
}
, (12)

where σW = Std [rW,t] and σX = Std
[
∆σ2

W,t

]
are the respective standard deviations of market

return and changes in market volatility. Similar to the covariance risk prices, the coefficients

a > 0 and b are also functions of the preference parameters and the parameters governing the

endowment dynamics. The term (σW/σX) ∆σ2
W,t may be viewed as the return on a volatility

index with same standard deviation as the market return. In this case, disappointment
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occurs if the return of holding a long position in the market index combined with a times

a short position in the volatility index falls below a constant threshold b. In particular, if

the coefficient a is equal to one, the long position in the market index is exactly balanced

by the short position in the volatility index in determining disappointment. As a decreases

from one towards zero, disappointment is more likely to occur due to a fall in the market

index rather than an increase in the volatility index. The opposite happens as a increases

from one towards infinity.

Equation (10) corresponds to a linear multifactor representation of expected excess re-

turns in the cross-section. The unrestricted model is a five-factor model which we refer to as

GDA5 throughout the rest of the paper. It states that in addition to the market return and

changes in market volatility, three additional factors command a risk premium: the disap-

pointment factor I (Dt), the market downside factor rW,tI (Dt), and the volatility downside

factor ∆σ2
W,tI (Dt).

There are two special cases worth considering. First, if the elasticity of intertemporal

substitution is infinite (ψ =∞), then changes in market volatility disappear from the model,

i.e., a = 0 and pX = pXD = 0. In this case the cross-sectional model (10) reduces to a

three-factor model with the market, the disappointment, and the market downside factors,

and the disappointing event has the simple form Dt = {rW,t < ln (κ/δ)}. We refer to this

restricted model as GDA3 throughout the paper. Second, if the representative investor is not

disappointment averse (` = 0), then pD = pWD = pXD = 0, i.e., all disappointment-related

related factors disappear from the model. In this case (10) reduces to a two-factor model

where only market risk and volatility risk are priced.
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Equation (10) may ultimately be expressed as a multivariate beta pricing model:

E
[
Re
i,t

]
= λ>FβiF (13)

where βiF is the vector containing the multivariate regression coefficients of asset excess

returns onto the factors, and λF is the vector of factor risk premiums, respectively given by

βiF = Σ−1F σiF and λF = ΣFpF . (14)

The vector σiF contains the covariances of the asset excess returns with the priced factors,

the vector pF contains the associated factor risk prices, and ΣF is the factor covariance

matrix. If the covariance between the market return and changes in market volatility is

negative, Cov
(
rW,t,∆σ

2
W,t

)
< 0, consistent with the leverage effect as postulated by Black

(1976) and documented by Christie (1982) and others, then the signs of the elements of λF

are the same as of the corresponding elements of pF . The model in (13) is the basis of our

empirical analysis.

3 Calibration assessment

In this section, we analyze the factor risk premia, λf with f ∈ {W,X,D,WD, XD}, gen-

erated by a GDA endowment economy, reasonably calibrated to match the risk-free rate

and the aggregate stock market behavior. In setting up the calibration, we closely follow

Bonomo et al. (2011). They study an asset pricing model with generalized disappointment

aversion preferences and long-run volatility risk and show that it produces first and second

moments of price-dividend ratios and asset returns as well as return predictability patterns
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in line with the data. Using the same endowment dynamics, we focus on the cross-sectional

implications by studying the model-implied factor risk premia.

We assume that the consumption growth and the equity dividend growth are conditionally

normal, unpredictable and their conditional variances fluctuate according to a two-state

Markov chain:

∆ct = µ+
√
ωc (st−1)εc,t

∆dt = µ+ νd
√
ωc (st−1)εd,t ,

(15)

where ∆ct is the aggregate consumption growth, ∆dt is the equity dividend growth, st−1

indicates the state of the world, and εc,t and εd,t follow a bivariate IID standard normal pro-

cess with mean zero and correlation ρ. The two states of the economy naturally correspond

to a low (L) and a high (H) volatility state.

The endowment dynamics is calibrated at the monthly frequency to match the sample

mean, volatility, and first-order autocorrelation of the real annual US consumption growth

and stock market dividend growth from 1930 to 2012. These moments remain stable if

the data are updated until more recently. Panel A of Table 1 shows the parameters of

the calibrated endowment process. The state transition probabilities are pLL = 0.9989 and

pHH = 0.9961, and the corresponding long-run probabilities are 78.9% and 21.1% for the

low and high volatility states, respectively. We set the preference parameters similar to the

benchmark calibration of Bonomo et al. (2011). The values are presented in Panel C of

Table 1. For the GDA3 model, we simply set ψ =∞, everything else being equal.

The first set of results in Panel B shows that our calibration matches well the first and

second moments of consumption and dividend growth in the data. The model-implied annu-

alized (time-averaged) mean, volatility and first-order autocorrelation of consumption growth
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are respectively 1.80%, 2.07%, and 0.25, and are consistent with the observed annual values

of 1.84%, 2.20%, and 0.48, respectively. The mean, volatility and first-order autocorrelation

of dividend growth are respectively 1.80%, 13.29% and 0.25, and the observed annual values

are 1.05%, 13.02% and 0.11, respectively.

Given these endowment dynamics, we solve for welfare valuation ratios in closed form,

which we combine with consumption growth to derive the endogenous market return and

market variance processes. We refer the reader to Bonomo et al. (2011) for formal derivations.

The second set of results in Panel B shows that the model generates moments of asset prices

that are consistent with empirical evidence. The level of risk free rate, 0.46% for GDA3

and 0.76% for GDA5, is close to the actual value of 0.57%. The equity premium, 8.06% for

GDA3 and 6.61% for GDA5, are slightly larger than the actual value of 5.50%, but remain

comparable to other sample values estimated in the literature, for example 7.25% in Bonomo

et al. (2011). The equity volatility generated by the model, 17.65% for GDA3 and 16.84%

for GDA5, is also comparable to the actual value of 20.25%.

The main purpose of this calibration is to study the model’s implications for the disap-

pointing event and the GDA factor risk premia. The definition of the disappointing event

in (12) shows that it relies on two parameters: a governs the relative importance of the

market return and changes in volatility, while b is the disappointment threshold. Panel D of

Table 1 shows that for the GDA3 model a = 0 and b = 0. That is, the disappointing event

is simply when the market return is negative. Note that model-implied unconditional prob-

ability of disappointment is 17.43%. For the GDA5 model a = 1.38, that is, a rise in market

volatility is slightly more likely to trigger disappointment than a fall in the market return.

The corresponding threshold is negative, b = −0.1%. The unconditional disappointment

probability for the GDA5 model is 16.06%.
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The model-implied monthly factor risk premia are also reported in Panel D. The market

risk premium is equal to λW = 0.0065 in the GDA3 model, and λW = 0.0042 for GDA5,

while the volatility risk premium is λX = 0 for GDA3, and λX = −1.38× 10−6 in the GDA5

model. Likewise, the market downside risk premium is equal to λWD = 0.0038 in the GDA3

model, and λWD = 0.0023 for GDA5, while the volatility downside risk premium is λXD = 0

for GDA3, and λXD = −1.16×10−6 in the GDA5 model. Finally the downside risk premium

is λD = −0.3494 in the GDA3 model, and λD = −0.3010 for GDA5. While Table 1 presents

the model’s implications for our benchmark calibration, in the Online Appendix we show

how sensitive these results are when we vary some of the preference parameters.

In the next section, we proceed with an empirical assessment of the model’s cross-sectional

implications and estimate the factor risk premia using a large class of asset returns. Let us

keep in mind that the true market return (the return of a claim on aggregate consumption)

and market volatility are not observable and have to be proxied by stock market and volatility

indexes. This, in particular, may alter the magnitudes of the estimated risk premia.

4 Empirical assessment

Our empirical tests are based on the linear beta representation (13). We use the aggregate

stock index return and aggregate stock index volatility to proxy for market return and market

volatility, and we also fix the parameters a and b defining the disappointing event so that all

factors are known and not to be estimated. We do not estimate the underlying preference

parameters, but instead we estimate the risk premiums which are functions of both the

underlying parameters and parameters governing the endowment dynamics in the economy.

Estimating the underlying preference parameters in the general setting has several chal-
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lenges. First, since the indicator function appears in the GMM moment conditions, and

a and b are functions of the preference parameters to estimate, the GMM objective function

to minimize is not differentiable. This makes parameter inference unreliable in the GMM

setting. Second, the market return is not observable and we use the return on the aggre-

gate stock index as a proxy. This proxy is much more volatile, since it is a claim on the

aggregate stock market dividend, whose growth rate is at least five times more volatile than

the aggregate consumption growth rate. So, even if feasible, an attempt to estimate the un-

derlying preference parameters with this proxy would induce large estimation bias. Third,

the preference parameter estimates would be dependent on the dynamics assumed for the

aggregate endowment in the economy. On the other hand, by estimating the reduced-form

risk premia in the linear beta representation (13) we are able to circumvent these challenges.

This approach also makes our results comparable to existing cross-sectional tests of models

with downside risks (e.g., Ang, Chen and Xing, 2006; and Lettau et al., 2014).

In order to estimate the reduced-form risk premia, we fix the parameters a and b defining

the disappointing event so that all factors are known. For the main part of the analysis we

set a = 0 and b = −0.03. That is, the disappointing event is defined as Dt = {rW,t < −0.03}.

Those months are considered disappointing when the market falls by more than three percent.

Setting a = 0 is in line with the theoretical implications in case of the GDA3 model. However,

in the more general (GDA5) setting theory implies that both market return and changes in

market volatility should enter the definition of the disappointing event (a > 0). Nevertheless,

we choose to use the above definition also for the GDA5 model for the main analysis. There

are several reasons for using this simpler definition.

First, decreasing market return and increasing market volatility tend to coincide empiri-

cally, which is also known as the leverage effect. That is, even if increasing market volatility
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is not explicitly included in the definition, disappointment tend to be accompanied with in-

creasing volatility. Table 2 shows that the unconditional correlation between rW,t and ∆σ2
W,t

in our sample is -0.25. Moreover, the conditional correlation (conditional on being in the

disappointing state) is even stronger, -0.46. Extreme volatility increases also happen in dis-

appointing months when disappointment is defined as rW,t < −0.03. Nine of the largest ten

∆σ2
W,t values in our sample is realized in disappointing months (and 16 of the largest 20).

Second, this simpler definition makes the results more comparable to previous literature,

as all studies analyzing downside risk define the downstate in terms of the market return

only. Ang, Chen and Xing (2006) define the disappointing event as the market return falling

below its sample average, while Lettau et al. (2014) define it to be months when the market

return is more than one standard deviation below its sample average. Considering the mean

and standard deviation of the market return from Table 2, we see that the definition used

by Lettau et al. (2014) is very close to our definition.

Nevertheless, in the robustness section we also consider a definition for the disappointing

event that explicitly takes into account changes in market volatility. Our calibration results

suggest that the model-implied value of the parameter a is slightly above one for the GDA5.

Therefore, we consider a = 1 in our robustness checks. The general conclusions remain

unchanged when that definition is used.

We set the disappointment threshold to -0.03 for the empirical analysis to match the

disappointment probability implied by the theoretical model. As shown in Table 1, our cali-

bration suggests that the model-implied disappointment probability is around 16% for both

the GDA3 and the GDA5 models. Table 2, on the other hand, shows that if disappointing

months are defined to be the ones when the market falls by more than three percent, the

disappointment probability is also close to 16%. Note that we also consider the robustness
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of our results to setting the disappointment threshold to values closer to zero.

4.1 Data and estimation method

We test our model using monthly returns on various asset classes including stocks, index

options, and currencies. Monthly returns on US stock portfolios are obtained from Kenneth

French’s data library.3 The sample covers the period from July 1964 to December 2013. Index

option returns are from Constantinides et al. (2013).4 They construct a panel of S&P 500

index option portfolios. The data set contains leverage-adjusted (that is, with a targeted

market beta of one) monthly returns of 54 option portfolios split across types (call and put),

each with a targeted time to maturity (30, 60, or 90 days), and a targeted moneyness level

(9 different levels). The option data is available from April 1986 to January 2012. Finally,

currency returns are from Lettau et al. (2014), who use monthly data on 53 currencies to

create six portfolios by sorting them in ascending order of their respective interest rates.5

The sample period is from January 1974 to March 2010. In our main analysis, we estimate

different asset pricing models on four sets of portfolios:

1. 25 (5×5) US stock portfolios sorted on size and momentum,

2. 24 (2×3×4) index option portfolios sorted on type, maturity, and moneyness,

3. 10 US stock portfolios sorted on size and 10 short maturity (30 days) index option

portfolios,

3http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
4Return data on the option portfolios is obtained from the website of Alexi Savov at

http://pages.stern.nyu.edu/asavov/alexisavov/Alexi Savov.html
5Return data on the currency portfolios is obtained from Michael Weber’s website at

http://faculty.chicagobooth.edu/michael.weber
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4. 6 (2×3) stock portfolios sorted on size and momentum, 6 short maturity index option

portfolios, and 6 currency portfolios.

Table 3 provides a detailed description of these sets. We choose to represent US stocks with

the portfolios sorted on size and momentum because this set provides the largest variation

in average returns from all the possible 5×5 sorts available in Kenneth French’s data library.

In the robustness section, however, we consider several other US stock sorts, including the

25 portfolios sorted on size and book-to-market, and show that the results are very similar.

When constructing the other sets of portfolios, we had two goals in mind. First, the total

number of portfolios should be similar across the four sets. Second, if multiple asset classes

are included at the same time, each asset class should be represented with the same number

of portfolios. We show estimation results for several other sets of portfolios in the Online

Appendix, which are omitted from the main text for the sake of brevity.6

To facilitate the empirical analysis, we also need data on the risk-free rate and the GDA

factors. The risk-free rate is the one-month US Treasury bill rate from Ibbotson Associates,

while the market return is the value-weighted average return on all CRSP stocks. Both series

were obtained from Kenneth French’s data library. Empirical tests of the GDA5 model

require a measure of market volatility. Several approaches have been used for measuring

market volatility in cross-sectional asset pricing studies. Ang et al. (2006) use the VIX,

Adrian and Rosenberg (2008) estimate volatility from a GARCH-type model, while Bandi

et al. (2006) use realized volatility computed from high-frequency index returns. In our

main analysis, we measure monthly volatility as the realized volatility of the daily market

6In the Online Appendix we show that the results do not change much if we do not adjust the number
of portfolios when including multiple asset classes, but use all the available portfolios instead. We also show
that the results on currencies are robust to using an alternative source for the return on currency portfolios
provided by Lustig et al. (2011). Furthermore, we consider additional asset classes, including corporate
bonds, sovereign bonds, and commodity futures.
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returns during the month. There are several advantages of this measure compared to other

alternatives. First, it is very easy to construct as it requires only daily market return

data. Second, it allows us to use a longer sample period. Note that we also use alternative

measures, including the VIX, realized volatility calculated from intra-daily market returns,

and a parametric model implied volatility in our robustness checks.

The portfolio betas and the factor premia from (13) are estimated jointly using the

generalized method of moments (GMM) with moment conditions as in Cochrane (2000):


E [Re

it − αi − FtβiF ] = 0 i = 1, ..., N

E [[Re
it − αi − FtβiF ] fjt] = 0 i = 1, ..., N , j = 1, ..., K

E [Re
it − βiFλF ] = 0 i = 1, ..., N

, (16)

where Re
it is the excess return on portfolio i, fjt denotes factor j, Ft is the vector of all factors

in the model, βiF is the vector of factor betas for portfolio i, and λF is the vector of factor

risk premia.7 The first two sets of moment conditions from (16) directly correspond to the

formula for estimating the β-s in (14), while the last set of moment conditions represents

the model in (13). The identity weighting matrix is used in the GMM estimation, so the

β and λ estimates are numerically equivalent to the ones that would be obtained using the

Fama-MacBeth (1973) estimation. The advantage of using the GMM is that the standard

errors account for the “generated regressors” problem, i.e., the fact that the β-s are also

7In an earlier version of the paper that has been circulated under the title “Volatility Downside Risk”, we
follow the same empirical approach as Ang, Chen and Xing (2006) to test the multivariate beta representation
in (13) using individual stocks (instead of portfolios). We use all common stocks traded on the NYSE, AMEX
and NASDAQ markets covering the period from July 1963 to December 2010. The empirical methodology
is based on cross-sectional regressions of Fama and MacBeth (1973) to estimate the factor risk premia,
where monthly factor exposures are measured from realized daily returns. The results from this analysis are
comparable to those in the current version of the paper and are available upon request.

20



estimated.8

4.2 Results

The main empirical results of the paper are presented in Table 4. Risk premia estimates

for four different models are presented. We also report the root mean squared pricing error

(RMSPE) expressed in basis points (bps) per month, to facilitate model comparison. Fur-

thermore, we test if the pricing errors are jointly zero using the χ2-test during the GMM

estimation (the test statistic is denoted as J-stat, and the p-value is in parenthesis).

In Panel A the test assets are the 25 size-momentum portfolios. The first model is the

CAPM. The price of market risk, λW , is positive and significant. The RMSPE is a quite

sizable 39 bps per month, and the χ2-test rejects that these pricing errors are jointly zero.

The next column ads volatility risk to the model (we refer to this model as VOL). Volatility

risk is also significantly priced in the cross-section of stock returns and carries a negative

premium. The RMSPE barely decreases and the model is also rejected by the χ2-test.

The next model is the GDA3. All three factors are statistically significant and the

signs are as expected: the market (λW ) and market downside (λWD) factors have a positive

premium, while the disappointment (λD) factor has a negative premium. In terms of model

fit, the GDA3 should be compared to the CAPM. First, they use the same information:

although the GDA3 has three factors, the only information needed to construct those factors

is the return on the market. Second, the CAPM arises as a restricted version of the GDA3

if the representative agent is not disappointment averse. The GDA3 provides a considerable

improvement, as the RMSPE is 22 bps, almost half of that of the CAPM. Moreover, the

8It is showed by Cochrane (2000), for example, that the correction due to Shanken (1992) can be recovered
as a special case of the GMM standard errors. During the GMM estimation we use the Newey-West estimator
with 3 lags for the covariance matrix of the moment conditions.
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χ2-test cannot reject the null that the GDA3 pricing errors are jointly zero at the 5% level.

The fourth model is the GDA5. All risk premia are statistically significant at least at

the 5% level, and the signs are as expected. The premia on both the volatility (λX) and

the volatility downside (λXD) factors are negative. In terms of model fit, the appropriate

benchmark is the VOL model. For both models the market return and changes in market

volatility are used to construct the factors, and the VOL arises as a restricted version of

the GDA5 when the representative agent is not disappointment averse. The GDA5 provides

substantial improvement with a RMSPE of 16 bps per month, less than half of the 36 bps

associated with the VOL model. The χ2-test rejects the null that the GDA5 pricing errors

are jointly zero. Note, however, that this happens only for the stock portfolios. In all the

other panels of Table 4 the GDA5 cannot be rejected.

Panels B to D present the results for the three other sets of portfolios. All factors in all

specifications are statistically significant at least at the 10% level and the respective signs

are the same as in Panel A. The magnitudes of the risk premia are fairly similar across

the different panels. This is remarkable since the test assets in separate panels represent

different asset classes. In alternative models, like the four-factor model of Carhart (1997),

risk premia can change considerably when different asset classes are used for the estimation

(see later results in the paper). Considering model fit, the GDA3 and GDA5 models provide

even bigger improvement compared to the CAPM in Panels B to D then in the case of the

stock portfolios. In Panel D, for example, the RMSPE of the CAPM is 50 bps per month,

while that of the GDA3 and GDA5 are 19 and 13 bps, respectively. Note also, that the

χ2-test cannot reject the null that the GDA5 pricing errors are jointly zero at the 5% level

in Panel B, and even at the 10% level in Panels C and D.

To visually assess the fit of different models, the top row in Figure 1 shows scatter plots
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of actual versus predicted returns corresponding to Panel D of Table 4, where all the asset

classes are included in the estimation.9 Panel A of Figure 1 highlights the failure of the

CAPM to price these portfolios. Within each asset class, the actual return of the portfolios

vary considerably, but the CAPM predicts similar returns for all portfolios. Consequently,

portfolios within each asset class line up close to a vertical line. The improvement in fit is

evident as we move from the CAPM towards the GDA5. For the GDA5, the portfolios line

up almost perfectly along the 45 degree line.

4.2.1 Comparison with alternative models

The cross-sectional implications of market downside risk has already been studied, for ex-

ample, by Ang, Chen and Xing (2006) and Lettau et al. (2014). These authors estimate

slightly different, but related models to quantify the effect of market downside risk. More

importantly, it can be shown that our GDA3 specification,

E [Re
it] = λWβiW + λDβiD + λWDβiWD , (17)

nests the models from both of these studies, with different restrictions on the value of λD.10

Ang, Chen and Xing (2006) specify the model for expected returns as

E [Re
it] = λ+β+

i + λ−β−i , with

β+
i =

Cov (Re
it, rWt | Ut)

V ar (rWt | Ut)
and β−i =

Cov (Re
it, rWt | Dt)

V ar (rWt | Dt)
,

(18)

9The Online Appendix contains scatter plots similar to the ones in Figure 1 for the three other sets of
portfolios.

10Appendix A contains detailed derivations of the results summarized below.
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where U refers to the upside event, which is the complement of the disappointing event D.

The model in (18) is equivalent to the GDA3 specification in (17) with

λW = λ+ + λ− , λD = 0 , λWD = λ− . (19)

That is, the model proposed by Ang, Chen and Xing (2006) imposes the restriction λD = 0.

On the other hand, Lettau et al. (2014) propose

E [Re
it] = λβi + λ−

(
β−i − βi

)
, with

βi =
Cov (Re

it, rWt)

V ar (rWt)
and β−i =

Cov (Re
it, rWt | Dt)

V ar (rWt | Dt)
,

(20)

where βi is the CAPM beta and β−i is the same downside beta that Ang, Chen and Xing

(2006) use. The specification in (20) is equivalent to the GDA3 specification in (17) with

λW = λ , λD =
γ2

1− γ1
(λW − λWD) , λWD = γ1λ+ (1− γ1)λ− , (21)

where

γ1 ≡
Cov (rWtI (Dt) , rWt)

V ar (rWt)
, γ2 ≡

Cov (I (Dt) , rWt)

V ar (rWt)
.

That is, the model proposed by Lettau et al. (2014) imposes λD = γ2
1−γ1 (λW − λWD). Since

Dt = {rW,t < −0.03}, i.e., I (Dt) takes the value of one when the market return is low, we

have γ2 < 0. It is also easy to see that 1 − γ1 > 0. Therefore, if λWD > λW , which is true

for all asset classes in Table 4, then the model of Lettau et al. (2014) imposes λD > 0.

Table 5 presents risk premia estimates for the model of Ang, Chen and Xing (2006) in

Panel A and for the model of Lettau et al. (2014) in Panel B. These two models are estimated

using the Fama-MacBeth (1973) procedure instead of the GMM, because according to the
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definitions in (18) and (20) only a subset of the sample should be used to calculate the

downside- and upside beta of a portfolio. Note that the different estimation procedure does

not have an effect on the point estimates, only on their standard errors. All factors from both

models are statistically significant for all sets of portfolios. More importantly, we also report

implied values of λW , λD, and λWD calculated using the formulas in (19) for Panel A and in

(21) for Panel B. This enables a direct comparison with the GDA3 model and allows us to

assess whether the restrictions imposed by the models are supported in the data. The model

used by Ang, Chen and Xing (2006) imposes λD = 0. This is rejected as the λD estimates are

significantly different from zero for the GDA3 model for all four sets of portfolios. Another

consequence of restricting λD = 0 is that implied prices of market downside risk, λWD, are

lower than the values estimated for the GDA3 model. Comparing model fit, the GDA3

model is associated with lower pricing errors than the model of Ang, Chen and Xing (2006),

and the difference can be quite substantial, as in the case of stock portfolios (22 bps for the

GDA3 and 31 bps for the model of Ang, Chen and Xing, 2006) and in the case when all

three asset classes are included (19 bps versus 27 bps). The model of Lettau et al. (2014)

imposes a different restriction on the premium associated with the disappointment factor.

As we pointed out earlier and can be seen in Panel B of Table 5, the implied λD values are

positive. This restriction is also rejected by the data since the λD estimates are negative

and significantly different from zero for the GDA3 model. Moreover, the implied λWD values

are even lower than in the case of the Ang, Chen and Xing (2006) model. Consequently,

the Lettau et al. (2014) model provides a poorer fit, in terms of RMSPE, than the other

two models. In general, the models used by Ang, Chen and Xing (2006) and Lettau et al.

(2014) impose restrictions, compared to the GDA3 model, that are not supported by the

data. Panels E and F in Figure 1 show scatter plots of actual versus predicted returns when
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all the asset classes are included in the estimation. These plots provide a visual evidence

that the GDA3 has a better fit than the two nested models.

The last model in Table 5 is the four-factor model of Carhart (1997). We include this

model in our analysis as it is an important benchmark in the literature. The Carhart (1997)

model does a good job in pricing the 25 stock portfolios sorted on size and momentum with a

RMSPE of 14 bps per month. This is not surprising, as the four-factor model was tailor made

to price these stock portfolios correctly. It is more surprising that the GDA5 provides a very

similar fit with a RMSPE of 16 bps, since the GDA5 was not explicitly constructed with the

size and momentum anomalies in mind. When we consider other asset classes, the success of

the Carhart (1997) model is not that evident any more. When estimating the model using

option portfolios, the pricing error is higher than that of the GDA5 model, but even more

importantly, the estimated risk premia change considerably compared to the first column.

The estimate on λHML switches sign, and the magnitudes of the other estimates also change

a lot. In other words, the estimated risk premia are very different, when different asset

classes are used. Consequently, the Carhart (1997) model performs badly when we estimate

it on the stock and option portfolios jointly. From all the models in Table 4 and Table 5,

only the CAPM has worse performance in terms of pricing error when stocks and options

are jointly considered. Similar conclusion arises when currency portfolios are included in the

test assets. In general, the four-factor model works well for pricing our stock portfolios, but

it is less successful in pricing portfolios from other asset classes. This is also illustrated in

Panel G of Figure 1. The stock portfolios line up along the 45 degree line, but the portfolios

from other asset classes do not.
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4.2.2 Robustness checks

Alternative disappointment regions

For our main results the disappointing event was defined as the market falling more than

three percent in a given month. Table 6 presents risk premia estimates for the GDA3 and

GDA5 models using different definitions. In Panel A disappointment sets in if the market

falls more than 1.5% in a given month. With this definition, the probability of having a

disappointing month between 1964 and 2013 is 26.7%, ten percentage points higher than

in the main specification. The results are similar to those obtained from the benchmark

specification in Table 4. The signs on the estimated risk premia are as expected and the

estimate are typically statistically significant. The only exception is the premium on the

disappointment factor, λD, which is insignificant in most of the specifications.

In Panel B all months with a negative market return are considered disappointing. The

probability of observing a negative market return between 1964 and 2013 is 38.5%. Note that

this definition is the closest to the one used by Ang, Chen and Xing (2006).11 Four out of the

five risk premia are statistically significant and have the expected sign in all specifications.

The exception is the disappointment factor, which is not significantly negative in any of the

specifications and often has a positive sign.

Panels A and B of Table 6 show that as the disappointment threshold increases, the

premium on the disappointment factor becomes insignificant. That is, disappointing events

should be sufficiently out in the left tail so that the disappointment factor is priced in the

cross-section. It is also important to know which threshold is more appropriate to describe the

11For their main results, Ang, Chen and Xing (2006) define the downside event as the market return falling
below its mean. However, they also use the same definition as Panel B of Table 6 in one of their robustness
checks. They report that the average cross-sectional correlation of their downside beta measure using the
two definitions for stocks listed on the NYSE is above 0.96.
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cross-section of different asset returns. Comparing the model fit for our benchmark definition

and the alternative definitions in Panel A and B, in seven out of eight specifications the lowest

RMSPE value is obtained for our benchmark definition, when disappointment corresponds

to the market falling more than three percent in a month.

Finally, changes in market volatility explicitly enter the definition of the disappointing

event in Panel C. The term (σW/σX) ∆σ2
W,t+1 may be viewed as the return on a volatility

index with same standard deviation as the market return. Disappointment occurs if the

return of holding a long position in the market index combined with a short position in the

volatility index falls below three percent in a given month. The unconditional probability

of a disappointing month between 1964 and 2013 is 17.3% using this definition. Recall that

the unconditional probability of disappointment using our benchmark definition is very close

to this, 16.3%. For further evidence that our benchmark definition for the disappointing

event (D1) and the definition in Panel C (D2) are empirically close to each other, note that

the probability of D1 conditional on D2 is 81.6% and the probability of D2 conditional on

D1 is 86.6% between 1964 and 2013. All the risk premia in Panel C have the expected sign

and most of them are statistically significant. The only notable exception is the premium

on the volatility factor (λX), which becomes insignificant in all specifications.

Alternative measures of market volatility

We also explore how the estimates for the GDA5 model change if a different measure of

market volatility is considered. Our alternative measures are the option-implied volatility

index (VIX), realized volatility calculated from intra-daily market returns, and a model im-

plied volatility calculated using an EGARCH specification. Appendix B contains a detailed

description of how these alternative measures are calculated. Note that the measures are
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available for different time periods. The VIX data is available starting from 1986 and our

intra-daily return data covers only the period from February 1986 to September 2010. The

model implied volatility is available for the entire sample period. For each specification we

used the longest sample possible, i.e., the sample period is the intersection of the availability

of the volatility data and the respective sample period from Table 3.

The results are presented in Table 7. The conclusion is similar across the panels. The

signs on the risk premia are as expected and, apart from a few cases, the risk premia estimates

are statistically significant. Looking at the RMSPE values, it is not clear which volatility

measure provides the best fit. In fact, for each portfolio set, a different volatility measure

provides the lowest pricing error (RMSPE). While there is no clear winner among alternative

volatility measures in terms of model fit, it is important to point out that the GDA5 model

considerably improves upon the GDA3 and its nested specifications, regardless of which

measure is used.

Alternative portfolios as test assets

Finally, we consider alternative sets of US stock portfolios. It has a long tradition in asset

pricing to study portfolios formed on size and book-to-market. Fama and French (2015) show

that sorting stocks based on size-profitability or on size-investments creates similar patterns.

Therefore, Table 8 shows estimated risk premia for the GDA5 model when the test assets

are (i) 30 portfolios consisting of 10 size, 10 book-to-market, 10 momentum portfolios, (ii) 25

(5×5) portfolios formed on size and book-to-market, (iii) 25 (5×5) portfolios formed on size

and operating profitability, and (iv) 25 (5×5) portfolios formed on size and investment. The

results show that all the risk premia are significant and have the expected sign. The only

exception is the disappointment premium in column 4, which is not statistically significant.
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That is, our results are robust to the choice of stock portfolios.

5 Conclusion

This paper provides an analysis of downside risks in asset prices. Our empirical tests are

motivated by a the cross-sectional implications of a dynamic consumption-based general

equilibrium model where the representative investor has generalized disappointment aversion

preferences and macroeconomic uncertainty is time-varying. We explicitly characterise the

factors that are valued by such an investor and show empirically that they are significantly

priced. We demonstrate that in addition to a fall in the market return, downside risk may

also be associated with a rise in market volatility, and that in consequence investors demand

a volatility downside risk premium to invest in risky securities. Our empirical tests confirm

the presence of a significant volatility downside risk premium in the cross-section of stocks,

options and currencies.

The related literature has mainly focused on the time series implications of this general

equilibrium setting, discussing the preference parameter values necessary to match empirical

regularities in equity returns, risk-free rate, variance premium and options. As we have

discussed, estimating these preference parameter values to jointly target both the time series

and the cross-section of asset returns remains challenging and constitutes an interesting

avenue for future research.
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A The GDA3 and nested models

To calculate betas in the GDA3 model, the following regression is estimated:

Re
it = αi + βiW rWt + βiDI (Dt) + βiWDrWtI (Dt) + εit (A.1)

The mechanics of the OLS implies E [eit] = E [eitrWt] = E [eitI (Dt)] = E [eitrWtI (Dt)] = 0,

where eit denote realized errors after the estimation. Then, with the estimated αi and βi-s,

E [Re
it] = αi + βiWE [rWt] + βiDπ + βiWDE [rWt | Dt] π (A.2)

E [Re
itrWt] = αiE [rWt] + βiWE

[
r2Wt

]
+ βiDE [rWt | Dt] π + βiWDE

[
r2Wt | Dt

]
π(A.3)

E [Re
it | Dt] = (αi + βiD) + (βiW + βiWD)E [rWt | Dt] (A.4)

E [Re
itrWt | Dt] = (αi + βiD)E [rWt | Dt] + (βiW + βiWD)E

[
r2Wt | Dt

]
, (A.5)

where E [I (Dt)] ≡ π is the unconditional probability of disappointment. Also note that the

occurence of the upside event, the complement of the disappointing event can be written as

I (Ut) = 1− I (Dt), hence (A.1) can be rewritten as

Re
it = αi + βiW rWt + βiWDrWt · [1− It (U)] + βiD [1− It (U)] + εit

= (αi + βiD) + (βiW + βiWD) rWt − βiWDrWt · It (U)− βiDIt (U) + εit .

(A.6)

Again, the mechanics of the OLS, namely E [eitI (Ut)] = E [eitrWtI (Ut)] = 0, gives us

E [Re
it|Ut] = αi + βiWE [rWt|Ut] (A.7)

E [Re
itrWt|Ut] = αiE [rWt|Ut] + βiWE

[
r2Wt|Ut

]
. (A.8)
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Using (A.4) and (A.5), it can be shown that the market downside beta is

β−i ≡
Cov (Re

it, rWt|Dt)
V ar (rWt|Dt)

=
E [Re

itrWt|Dt]− E [Re
it|Dt]E [rWt|Dt]

V ar (rWt|Dt)
= βiW + βiWD (A.9)

Using (A.7) and (A.8), the upside beta is

β+
i ≡

Cov (Re
it, rWt|Ut)

V ar (rWt|Ut)
=
E [Re

itrWt|Ut]− E [Re
it|Ut]E [rWt|Ut]

V ar (rWt|Ut)
= βiW (A.10)

Finally, using (A.2) and (A.3) it can be shown that

Cov (Re
it, rWt) = βiWV ar (rWt) +βiWDCov (rWtI (Dt) , rWt) +βiDCov (I (Dt) , rWt) . (A.11)

Hence, the CAPM beta is

βi ≡
Cov (Re

it, rWt)

V ar (rWt)
= βiW + βiWD

Cov (rWtI (Dt) , rWt)

V ar (rWt)︸ ︷︷ ︸
≡γ1

+βiD
Cov (I (Dt) , rWt)

V ar (rWt)︸ ︷︷ ︸
≡γ2

(A.12)

Using (A.9) and (A.10), the model proposed by Ang, Chen and Xing (2006) can be written

as

E [Re
it] = λ+β+

i + λ−β−i =
(
λ+ + λ−

)
βiW + λ−βiWD . (A.13)

Using (A.9) and (A.12) the model proposed by Lettau et al. (2014) can be written as

E [Re
i ] = λβi + λ−

(
β−i − βi

)
= λβiW +

(
γ1λ+ (1− γ1)λ−

)
βiWD + γ2

(
λ− λ−

)
βiD .

(A.14)
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B Measures of market volatility

For the main part of the analysis, monthly volatility is measured as the realized volatility of

the daily market returns during the month:

σ2
W,t =

Nt∑
τ=1

(rW,t,τ − µW,t)2 , (B.1)

where rW,t,τ is the daily market return on the τ -th trading day of month t, µW,t is the mean

of the daily market returns in month t, and Nt is the number of trading days in month t.

The options-implied monthly volatility is calculated as

σ2,V IX
W,t =

1

Nt

Nt∑
τ=1

(
V IXt,τ

100 ·
√

12

)2

, (B.2)

where V IXt,τ is the value of the VIX index on the τ -th trading day of month t. The daily

value of the VIX index is obtained from CBOE through the WRDS service.

Monthly realized volatility from intra-daily market returns is calculated as

σ2,RV
W,t =

Nt∑
τ=1

Nτ∑
j=1

r2W,t,τ,j , (B.3)

where rW,t,τ,j denotes the 10-minute log return series on the τ -th trading day of month t and

Nτ is the number intra-daily returns within a trading day. We use intra-daily return series

of the S&P 500. The data comes from Olsen Financial Technologies and covers the period

between February 1986 and September 2010.

Finally, in the model based approach, we fit a model with conditional heteroskedasticity
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to the daily log market return series rW,τ . We consider the EGARCH(1,1,1) by Nelson (1991),

rW,τ = µ+ σW,τετ , with ετ
iid∼ N (0, 1)

ln
(
σ2
W,τ

)
= ω + ν

(
|ετ | −

√
2/π
)

+ θετ + φ ln
(
σ2
W,τ−1

) (B.4)

Then the model-implied monthly volatility is calculated as

σ2,EGARCH
W,t =

Nt∑
τ=1

σ̂2
W,t,τ , (B.5)

where σ̂2
W,t,τ is the estimated daily variance on the τ -th trading day of month t.

Change in monthly volatility for all of the above measures is calculated as

∆σ2,·
W,t = σ2,·

W,t − σ
2,·
W,t−1 . (B.6)
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Table 1: Model calibration

A. Endowment parameters C. Preference parameters

µ = 0.15%,
√
ωc (L) = 0.46%,

√
ωc (H) = 1.32%, δ = 0.998, γ = 2.5, ` = 2.33, κ = 0.998

νd = 6.42, ρ = 0.3, pHH = 0.9961, pLL = 0.9989

B. Endowment and asset pricing moments D. Downside event and factor risk premia

Sample GDA3 GDA5 GDA3 GDA5

E [∆ct] (%) 1.84 1.80 1.80 ψ ∞ 1.5
σ [∆ct] (%) 2.20 2.07 2.07
AC1 (∆ct) 0.48 0.25 0.25 a 0.00 1.38
E [∆dt] (%) 1.05 1.80 1.80 b (%) 0.00 -0.10
σ [∆dt] (%) 13.02 13.29 13.29 Prob (D) (%) 17.43 16.09
AC1 (∆dt) 0.11 0.25 0.25
Corr (∆ct,∆dt) 0.52 0.30 0.30 λW 0.0065 0.0042

λX -1.38E-6
E [pd] (%) 3.33 2.72 2.89 λD -0.3494 -0.3010
σ [pd] (%) 0.44 0.20 0.11 λWD 0.0038 0.0023
E [rf ] (%) 0.57 0.46 0.76 λXD -1.16E-6
σ [rf ] (%) 3.77 0.15 1.55
E [r − rf ] (%) 5.50 8.06 6.61
σ [r − rf ] (%) 20.25 17.65 16.84

The entries of the table are, in Panel (A), the first and second moments of consumption and dividend growth
rates, the first and second moments of the log price-dividend ratio, and the log risk-free rate and excess
log equity returns, in Panel (B), the characteristics of the downside event, and in Panel (C), the factor risk
premia, as implied by the GDA model. The first column represents annual data counterparts over the period
from January 1930 to December 2012.
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Table 2: Summary statistics

Period 07/1964 – 12/2013 04/1986 – 01/2012

E (rW,t) 0.0080 0.0073
Std (rW,t) 0.0454 0.0474
Corr

(
rW,t,∆σ

2
W,t

)
-0.25 -0.30

Corr
(
rW,t,∆σ

2
W,t | Dt

)
-0.46 -0.51

Prob (Dt) 16.3% 16.5%

The table reports some summary statistics about the monthly mar-
ket return (rW,t) and the disappointing event Dt = {rW,t < −0.03}
for two subperiods. We report the mean and standard deviation of
the market return, the conditional and unconditional correlation be-
tween the market return and changes in market volatility (∆σ2

W,t),
and the unconditional probability of disappointment.

Table 3: Description of the portfolios

Set #Port Description Sample period

Stocks 25 25 (5×5) value-weighted US stock portfolios sorted on size
and momentum.

07/1964 – 12/2013

Options 24 24 (2×3×4) S&P 500 index option portfolios sorted on type
(call and put), maturity (30, 60, or 90 days), and moneyness
(5% ITM, ATM, 5% OTM, and 10% OTM)

04/1986 – 01/2012

Stocks and
options

20 10 value-weighted US stock portfolios sorted on size and 10
(2×5) short maturity (30 days) S&P 500 index option port-
folios sorted on type (call and put) and moneyness (10%
ITM, 5% ITM, ATM, 5% OTM, and 10% OTM)

04/1986 – 01/2012

Stocks, op-
tions, and
currencies

18 6 (2×3) value-weighted US stock portfolios sorted on size
and momentum, 6 (2×3) short maturity (30 days) S&P
500 index option portfolios sorted on type (call and put)
and moneyness (ATM, 5% OTM, and 10% OTM), and 6
currency portfolios sorted on their respective interest rates.

04/1986 – 03/2010
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Table 4: Risk premia

CAPM VOL GDA3 GDA5 CAPM VOL GDA3 GDA5

A. Stocks (N=25) B. Options (N=24)

λW 0.0059∗∗∗ 0.0048∗∗ 0.0079∗∗∗ 0.0082∗∗∗ 0.0056∗∗ 0.0055∗ 0.0056∗ 0.0091∗∗∗

(0.0022) (0.0020) (0.0022) (0.0022) (0.0028) (0.0029) (0.0032) (0.0027)
λD -0.3614∗∗∗ -0.2421∗∗ -0.2535∗∗∗ -0.4172∗∗∗

(0.1184) (0.1016) (0.0688) (0.0642)
λWD 0.0273∗∗∗ 0.0216∗∗∗ 0.0185∗∗∗ 0.0330∗∗∗

(0.0066) (0.0062) (0.0045) (0.0063)
λX -0.0032∗∗∗ -0.0026∗∗∗ -0.0029∗∗∗ -0.0026∗∗∗

(0.0010) (0.0008) (0.0007) (0.0008)
λXD -0.0031∗∗∗ -0.0057∗∗∗

(0.0008) (0.0017)

RMSPE 39.2 35.6 21.8 16.0 49.2 16.3 13.4 10.5
J-stat 111.7 124.0 32.3 53.5 141.5 96.3 71.4 28.9

(0.00) (0.00) (0.07) (0.00) (0.00) (0.00) (0.00) (0.07)

C. Stocks and Options (N=20) D. Stocks, Options, and Currencies (N=18)

λW 0.0062∗∗ 0.0054∗ 0.0068∗∗ 0.0088∗∗∗ 0.0066∗∗ 0.0057∗ 0.0070∗∗ 0.0080∗∗∗

(0.0029) (0.0028) (0.0031) (0.0029) (0.0030) (0.0029) (0.0034) (0.0029)
λD -0.2129∗∗ -0.2321∗∗ -0.2765∗∗∗ -0.1939∗

(0.0935) (0.1131) (0.1018) (0.1133)
λWD 0.0197∗∗∗ 0.0227∗∗∗ 0.0210∗∗∗ 0.0156∗∗

(0.0043) (0.0042) (0.0044) (0.0079)
λX -0.0032∗∗∗ -0.0036∗∗ -0.0035∗∗∗ -0.0034∗

(0.0007) (0.0014) (0.0008) (0.0020)
λXD -0.0054∗∗∗ -0.0042∗∗

(0.0021) (0.0018)

RMSPE 41.9 17.6 15.8 8.5 48.9 26.5 19.3 12.8
J-stat 84.6 50.5 29.3 14.8 88.7 64.3 30.5 16.4

(0.00) (0.00) (0.03) (0.46) (0.00) (0.00) (0.01) (0.23)

The table shows risk premia estimates for four different models using four different sets of portfolios (in
Panles; the compositions of different sets are described in Table 3). The factor premia are estimated
using GMM with moment conditions as in (16) and the identity weighting matrix. Standard errors of the
estimates are reported in parenthesis. The Newey-West estimator with 3 lags is used for the covariance
matrix of the moment conditions. The row “RMSPE” presents the root mean squared pricing error of the
model and is expressed in basis points (bps) per month. “J-stat” refers to the test statistic of the χ2-test
with the null that the pricing errors are jointly zero (the associated p-value is in parenthesis).
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Table 5: Risk premia in alternative models

Stocks X X X
Options X X X
Currencies X

A. Ang, Chen and Xing (2006)
λ+ -0.0101∗∗∗ -0.0072∗∗∗ -0.0078∗∗∗ -0.0092∗∗∗

(0.0030) (0.0027) (0.0028) (0.0027)
λ− 0.0168∗∗∗ 0.0162∗∗∗ 0.0156∗∗∗ 0.0174∗∗∗

(0.0032) (0.0032) (0.0031) (0.0030)

(λW ) 0.0067 0.0090 0.0078 0.0082
(λD) 0 0 0 0
(λWD) 0.0168 0.0162 0.0156 0.0174

RMSPE 30.7 15.9 22.2 27.1
B. Lettau et al. (2014)
λ 0.0063∗∗∗ 0.0099∗∗∗ 0.0080∗∗∗ 0.0085∗∗∗

(0.0020) (0.0031) (0.0029) (0.0029)
λ− 0.0158∗∗∗ 0.0216∗∗∗ 0.0185∗∗∗ 0.0218∗∗∗

(0.0037) (0.0045) (0.0045) (0.0042)

(λW ) 0.0063 0.0099 0.0080 0.0085
(λD) 0.1035 0.1406 0.1272 0.1632
(λWD) 0.0113 0.0154 0.0129 0.0146

RMSPE 33.7 17.3 25.8 31.5
C. Carhart (1997)
λW 0.0058∗∗∗ 0.0169∗∗∗ 0.0077∗∗∗ 0.0068∗∗

(0.0020) (0.0035) (0.0027) (0.0028)
λSMB 0.0021 0.0646∗∗∗ -0.0070∗∗ 0.0016

(0.0015) (0.0133) (0.0035) (0.0021)
λHML 0.0055∗∗∗ -0.0989∗∗∗ 0.0381∗∗∗ 0.0096∗∗

(0.0021) (0.0308) (0.0143) (0.0039)
λWML 0.0080∗∗∗ 0.0162 0.0669∗∗∗ 0.0076∗∗

(0.0018) (0.0186) (0.0170) (0.0031)

RMSPE 13.7 12.4 31.0 41.9
J-stat 73.6 28.2 27.8 70.1

(0.00) (0.11) (0.03) (0.00)

The table shows risk premia estimates for three different models (in panels) using four different sets of
portfolios. The factor premia are estimated using the Fama and MacBeth (1973) procedure in Panels A and B,
and using GMM (same as in Table 4) in Panel C. Standard errors of the estimates are reported in parenthesis.
Implied premia for the GDA3 model, (λW ), (λD), and (λWD) are calculated using the formulas in (19) for
Panel A and in (21) for Panel B. The row “RMSPE” presents the root mean squared pricing error of the
model and is expressed in basis points (bps) per month.
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Table 6: Risk premia for alternative definitions of the disappointing event

Stocks X X X X X X
Options X X X X X X
Currencies X X

A. Dt = {rW,t < −0.015}
λW 0.0068∗∗∗ 0.0079∗∗∗ 0.0075∗∗ 0.0119∗∗∗ 0.0079∗∗∗ 0.0091∗∗∗ 0.0078∗∗ 0.0093∗∗∗

(0.0024) (0.0022) (0.0031) (0.0026) (0.0030) (0.0027) (0.0033) (0.0028)
λD -0.2478∗∗ -0.2213∗ -0.0301 -0.1298∗ 0.1269 -0.2938 -0.0253 0.0305

(0.1248) (0.1190) (0.0941) (0.0757) (0.0896) (0.3554) (0.1360) (0.1166)
λWD 0.0199∗∗∗ 0.0164∗∗∗ 0.0154∗∗∗ 0.0301∗∗∗ 0.0153∗∗∗ 0.0197∗∗∗ 0.0171∗∗∗ 0.0150∗∗

(0.0046) (0.0046) (0.0041) (0.0047) (0.0038) (0.0035) (0.0037) (0.0058)
λX -0.0018∗∗ -0.0021∗∗∗ -0.0045∗∗ -0.0041∗

(0.0008) (0.0007) (0.0022) (0.0022)
λXD -0.0025∗∗∗ -0.0045∗∗∗ -0.0069∗ -0.0050∗∗

(0.0008) (0.0014) (0.0038) (0.0022)

RMSPE 23.2 15.4 14.4 12.4 17.2 13.6 22.7 16.9
J-stat 38.1 47.0 104.0 57.9 35.1 10.6 38.7 25.4

(0.02) (0.00) (0.00) (0.00) (0.01) (0.78) (0.00) (0.02)
B. Dt = {rW,t < 0}
λW 0.0064∗∗ 0.0078∗∗∗ 0.0076∗∗ 0.0120∗∗∗ 0.0088∗∗∗ 0.0087∗∗∗ 0.0080∗∗ 0.0098∗∗∗

(0.0026) (0.0022) (0.0030) (0.0024) (0.0029) (0.0028) (0.0032) (0.0027)
λD -0.1409 -0.0988 0.1111 0.0490 0.3742∗∗ 0.2919∗ 0.1688 0.1720

(0.1033) (0.0964) (0.0911) (0.0785) (0.1476) (0.1697) (0.1386) (0.1210)
λWD 0.0174∗∗∗ 0.0152∗∗∗ 0.0150∗∗∗ 0.0295∗∗∗ 0.0162∗∗∗ 0.0130∗∗∗ 0.0169∗∗∗ 0.0174∗∗∗

(0.0043) (0.0043) (0.0040) (0.0044) (0.0038) (0.0046) (0.0039) (0.0045)
λX -0.0017∗∗ -0.0022∗∗∗ -0.0038∗∗∗ -0.0035∗

(0.0009) (0.0006) (0.0012) (0.0018)
λXD -0.0023∗∗∗ -0.0045∗∗∗ -0.0043∗∗∗ -0.0045∗∗

(0.0008) (0.0014) (0.0013) (0.0019)

RMSPE 22.8 15.3 14.0 12.5 14.0 12.0 21.2 15.5
J-stat 40.6 54.2 99.6 58.4 23.2 23.7 30.7 21.7

(0.01) (0.00) (0.00) (0.00) (0.14) (0.07) (0.01) (0.06)
C. Dt = {rW,t − σW

σ
∆σ2

W,t

∆σ2
W < −0.03}

λW 0.0079∗∗∗ 0.0100∗∗∗ 0.0068∗∗ 0.0082∗∗∗

(0.0021) (0.0038) (0.0031) (0.0031)
λD -0.1672∗ -0.3931∗∗∗ -0.2657∗∗∗ -0.2454∗

(0.1008) (0.0593) (0.0831) (0.1341)
λWD 0.0094 0.0478∗∗∗ 0.0197∗∗∗ 0.0218∗∗∗

(0.0071) (0.0089) (0.0065) (0.0065)
λX -0.0004 -0.0010 -0.0012 -0.0010

(0.0011) (0.0006) (0.0010) (0.0016)
λXD -0.0020∗∗∗ -0.0004 -0.0015 -0.0017∗∗∗

(0.0005) (0.0005) (0.0011) (0.0007)

RMSPE 14.1 8.9 13.2 20.3
J-stat 45.4 18.9 19.4 20.6

(0.00) (0.46) (0.20) (0.08)

The table shows risk premia estimates for the GDA3 and GDA5 models using four different sets of
portfolios (the compositions of different sets are described in Table 3). The panels of the table correspond
to different definitions of the disappointing event. The estimation procedure is the same as in Table 4
(for details, see the caption of Table 4). 44



Table 7: Risk premia with alternative volatility measures

Stocks X X X
Options X X X
Currencies X

A. Implied Volatility (VIX)
λW 0.0087∗∗∗ 0.0160∗∗∗ 0.0080∗∗ 0.0088∗∗∗

(0.0029) (0.0044) (0.0031) (0.0030)
λD -0.0969 -0.4287∗∗∗ -0.3801∗∗ -0.2901∗∗

(0.1436) (0.0770) (0.1814) (0.1153)
λWD 0.0116∗ 0.0487∗∗∗ 0.0242∗∗∗ 0.0251∗∗∗

(0.0070) (0.0094) (0.0044) (0.0063)
λX -0.0012∗∗ -0.0012∗∗∗ -0.0010 -0.0007

(0.0005) (0.0004) (0.0006) (0.0009)
λXD -0.0018∗∗∗ -0.0036∗∗∗ -0.0020∗∗∗ -0.0013∗

(0.0006) (0.0010) (0.0007) (0.0007)

RMSPE 15.9 10.1 14.4 16.7
J-stat 36.6 25.0 10.3 15.5

(0.01) (0.16) (0.80) (0.28)
B. Realized Volatility (intra-daily)
λW 0.0080∗∗ 0.0111∗∗∗ 0.0080∗∗∗ 0.0084∗∗∗

(0.0031) (0.0039) (0.0030) (0.0030)
λD -0.2214 -0.2964∗∗∗ -0.2098∗ -0.2239∗

(0.1958) (0.0499) (0.1093) (0.1313)
λWD 0.0164∗ 0.0351∗∗∗ 0.0195∗∗∗ 0.0190∗∗

(0.0096) (0.0066) (0.0037) (0.0088)
λX -0.0015∗∗ 0.0004 -0.0020∗∗∗ -0.0017∗

(0.0007) (0.0006) (0.0007) (0.0010)
λXD -0.0019∗∗ -0.0002 -0.0028∗∗∗ -0.0022∗∗∗

(0.0008) (0.0008) (0.0010) (0.0009)

RMSPE 17.1 13.2 10.9 11.3
J-stat 24.3 60.3 19.9 13.2

(0.23) (0.00) (0.18) (0.43)
C. Model Implied Volatility (EGARCH)
λW 0.0089∗∗∗ 0.0077∗∗ 0.0082∗∗∗ 0.0082∗∗∗

(0.0021) (0.0035) (0.0030) (0.0030)
λD -0.1671∗ -0.4285∗∗∗ -0.1553∗∗ -0.1565∗

(0.0999) (0.0538) (0.0720) (0.0902)
λWD 0.0217∗∗∗ 0.0368∗∗∗ 0.0209∗∗∗ 0.0176∗∗

(0.0060) (0.0088) (0.0044) (0.0078)
λX -0.0006 0.0002 -0.0008∗∗ -0.0010

(0.0003) (0.0005) (0.0004) (0.0007)
λXD -0.0010∗∗∗ -0.0012∗∗∗ -0.0015∗∗∗ -0.0015∗∗

(0.0004) (0.0004) (0.0005) (0.0006)

RMSPE 14.9 11.3 9.0 13.5
J-stat 51.1 27.7 23.2 26.0

(0.00) (0.09) (0.08) (0.02)

The table shows risk premia estimates for the GDA5 model using four different sets of portfolios (the
compositions of different sets are described in Table 3). The panels of the table correspond to different
measures of market volatility. Details on how the measures are calculated can be found in Appendix B. The
estimation procedure is the same as in Table 4 (for details, see the caption of Table 4).45



Table 8: Risk premia with alternative stock portfolios

10 B,S,M 25 S-BM 25 S-OP 25 S-INV

A.GDA3
λW 0.0072∗∗∗ 0.0068∗∗∗ 0.0070∗∗∗ 0.0068∗∗∗

(0.0022) (0.0022) (0.0023) (0.0022)
λD -0.3018∗∗∗ 0.1569 -0.1798∗∗ 0.0970

(0.1077) (0.0998) (0.0900) (0.0795)
λWD 0.0207∗∗∗ 0.0089 0.0155∗ 0.0078

(0.0063) (0.0059) (0.0084) (0.0063)

RMSPE 17.9 22.9 17.1 21.5
J-stat 30.4 70.7 24.0 90.9

p-value (0.30) (0.00) (0.35) (0.00)
B. GDA5
λW 0.0075∗∗∗ 0.0092∗∗∗ 0.0081∗∗∗ 0.0108∗∗∗

(0.0021) (0.0025) (0.0023) (0.0025)
λD -0.2440∗∗ -0.2002∗ -0.3562∗∗∗ -0.0620

(0.0998) (0.1073) (0.1325) (0.0884)
λWD 0.0202∗∗∗ 0.0298∗∗∗ 0.0293∗∗∗ 0.0362∗∗∗

(0.0061) (0.0091) (0.0101) (0.0091)
λX -0.0017∗∗ -0.0036∗∗∗ -0.0043∗∗∗ -0.0053∗∗∗

(0.0007) (0.0009) (0.0013) (0.0009)
λXD -0.0022∗∗∗ -0.0048∗∗∗ -0.0052∗∗∗ -0.0072∗∗∗

(0.0007) (0.0012) (0.0016) (0.0011)

RMSPE 16.7 17.9 13.9 15.6
J-stat 33.1 32.0 12.5 17.4

p-value 0.13 0.04 0.90 0.63

The table shows risk premia estimates for the GDA3 and GDA5 models using four different sets of US
stock portfolios as test assets: (i) 30 portfolios consisting of 10 size, 10 book-to-market, 10 momentum
portfolios, (ii) 25 (5×5) portfolios formed on size and book-to-market, (iii) 25 (5×5) portfolios formed on
size and operating profitability, and (iv) 25 (5×5) portfolios formed on size and investment. The estimation
procedure is the same as in Table 4 (for details, see the caption of Table 4)
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