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Abstract

We consider the Homoscedastic Gamma [HG| model where the distribution of returns is
characterized by its mean, variance and an independent skewness parameter. We develop
an explicit change of measures and present practitioner’s variants. When compared to prac-
titioner’s variants of the Black-Scholes-Merton [BSM| model we find that HG-based models
improve pricing (in-sample and out-of-sample) and hedging performances with as many or
less parameters. Our results imply that expanding around the Gaussian density does not
offer sufficient flexibility to match the skewness implicit in options. The model predicts that
skewness, the volatility spread and the equity premium are tightly linked. Empirically, we
find that conditioning on implied skewness increases the predictive power of the volatility
spread for excess returns. The HG model also has a sharp prediction for the pattern of
Delta-Hedged gains across option strike prices. The evidence shows that substantial share of
these gains can be attributed to skewness of index returns. Finally, we document the steep
slope of skewness term structure across option maturities. The simplicity of the HG mod-
els delivers important insight on the properties and the economic content of option-implied
skewness.
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I Introduction

Despite its empirical shortcomings, the Black-Scholes-Merton [BSM| model for option prices
remains ubiquitous, and for good reasons. Beyond its simplicity and ease of computation, the
model’s Implied Volatility [IV] curves deliver a transparent comparison of options through
time and across strike prices. That is, the BSM option price can be inverted uniquely for
the volatility parameter across strike prices.! For traders, this curve is relatively insensitive
to variations in the intrinsic value of the options and, thus, in the level of the underlying.
Rather, it is a measure of an option’s time value and provides a direct indication of relative

valuations across strike price or through time.

We study the Homoscedastic Gamma model [HG| in which innovations of market returns
are parameterized by their mean, variance and skewness. The skewness parameter can be
chosen independently and we nest the Black-Scholes-Merton [BSM] case if skewness is zero.
Indeed, the HG model preserves BSM’s parsimony and closed-form option prices. We then
introduce the implied volatility and skewness surface, an extension of the IV curve. Repeating
the inversion of option prices for an IV curve across values of skewness delivers the implied
volatility and skewness surface. The surface provides a transparent understanding of IV
curve variations in term of skewness. We find that the volatility-skewness relationship is
smooth in practice: negative (positive) skewness increases (decreases) the implied volatility
of out-of-the-money calls and decreases (increases) the implied volatility of in-the-money
calls. We draw two important conclusions. First, the HG model can restore the symmetry

of the observed IV curve and, second, the level of the IV curve also depends on skewness.

We test the pricing and hedging implications of the simple HG and BSM models and
their Practitioner’s variants |P-HG and P-BSM|. We interpret these variants as expansions
around the HG and the Normal distributions, respectively. However, in the case of the P-HG
model, we develop and impose restrictions ensuring the identification of the skewness and
kurtosis parameters with the true underlying risk-neutral parameters. We show that P-HG
models, in general, and these parameter restrictions, specifically, approach improves out-of-
sample pricing and hedging results. Moreover, we show that much of the improvement comes
from variations of skewness rather than kurtosis. This imply that density expansion around
the Gaussian density, such as the P-BSM model, does not properly capture the skewness
present in option data. Another way to view the hedging results is to consider the results
of Bates (2005) and Alexander and Nogueira (2005). Essentially, for any contingent claim

that is homogenous of degree one, which is the case here, partial derivatives of its price with

!The BSM option price formula is a function of the strike price, stock price, interest rate, maturity of the
option and of anticipated volatility but only the latter is unobservable.



respect to the change in the underlying (i.e. A;) can be computed, model-free, by taking
partial derivatives of observed option prices with respect to strike prices. This implies that
models that price options similarly, say if expansion around the Normal and Gamma density
are equivalent, then they should have similar hedging implications. The relative hedging
performances of the P-BSM model delivers a better fit of the true underlying conditional

returns distribution but with no increase in implementation costs.

Next, we we follow Christoffersen et al. (2009) and provide a Stochastic Discount Factor
[SDF| under which stock returns are HG under both the historical and risk-neutral prob-
ability measures. This delivers a closed-form analysis of change in the expected returns
under both measures (i.e. the equity premium), changes of returns volatility (i.e. the volatil-
ity spread) and changes of the skewness of returns. This delivers a sharp prediction about
the relationship between the risk premium, the volatility spread and skewness. The equity
premium is equal to twice the ratio of the volatility spread to skewness. Using volatility and
skewness implicit in option prices, we can perform regressions of SP500 excess returns on
the ratio of the volatility spread to skewness. We find improvement in predictive power and
coefficients have the correct sign and magnitude. In short, theory and evidence shows that
the predictive power of the volatility spread analyzed in a recent literature (see e.g. Boller-
slev et al. (2008)) is conditional on skewness. Reversing the relationship, and interpreting
the volatility spread as the returns on a portfolio of options, we show that a version of the
CAPM conditional on skewness “explains” the returns on the volatility spread portfolio. In
the light of the question posed in Carr and Wu (2009) regarding which factor may explain the
variance premium we argue that skewness plays an important role. Moreover, while different
channels can generate skewness and a volatility spread, these have different implications for

link, documented here, between the risk premium, the volatility spread and skewness.

The HG model also delivers a sharp predictions for Delta-Hedged gains from holding
options. The impact of (negative) skewness on the sensitivity of option prices to changes
in the underlying index (i.e. A;), relative to the BSM case, is larger for out-of-the-money
options than for in-the-money options. Hence, we compare realized gains using A; from
the BSM and the HG models, respectively. Overall, we find that gains are closer to zero
when using the HG model. Moreover, the impact of skewness is highest for short maturity
deep out-of-the money options. As predicted, the impact decreases with moneyness and
with maturity. The evidence complements Bakshi and Kapadia (2003). They show that
stochastic volatility risk explains much of Delta-Hedged gains from holding near-the-money
options. Our results suggests that a substantial fraction of Delta-Hedged gains from holding
out-of-the-money options can be attributed to non-normality (i.e. jumps) in stock index

returns.



Finally, we study the term structure of implied volatility, skewness and excess kurtosis.
This is a first step to understand the impact of time dependence on risk-neutral moments.
The HG model is parsimonious and requires less data than non-parametric approaches to
deliver estimates of option-implied moments. Then, we can obtain measures of option-
implied volatility and skewness at longer horizons where data are sparser. The evidence
suggests that skewness decays at a rate slower than what implied by the i.i.d. assumption.
In other words, the time-dependence structure of returns has a larger impact on the term
structure of skewness than on volatility and kurtosis. To our knowledge, this differential

impact of returns time-dependence on higher moments has never been documented.
Related Literature

The stylized observations that IV curves typically display a smile, a skewed smile or a
smirk have been interpreted as evidence of skewness and kurtosis in the underlying risk-
neutral distribution of stock price (e.g. Rubinstein and Jackwerth (1998) ). In practice, the
importance of skewness for pricing stock index options has been highlighted in the empirical
works of Bakshi et al. (1997), Bates (2000) and Christoffersen et al. (2006). However, it
is generally difficult to invert option prices and obtain estimates of implied volatility or
implied skewness. In most cases, volatility and skewness are not independent or, else, option
prices are not available in closed-form, rendering inversion or estimation computationally
expensive. Then, although the increased sophistication allows for a better fit of observed
IV curves, our understanding of skewness remains incomplete. In particular, the linkages
between skewness, implicit from option prices, the risk premium, measured from equity
returns, and the volatility spread remains elusive. The i.i.d. case leads to a stylized model

but allows us to maintain parsimony and analytical tractability.

Option pricing based on a Gram-Charlier expansion also offers direct parametrization
of skewness and kurtosis (Jarrow and Rudd (1982), Corrado and Su (1996), Potters et al.
(1998)). However, approximations of the underlying risk-neutral density often turn negative
implying that estimated values of cumulants do not belong to a true distribution. Jondeau
and Rockinger (2001) offer a natural remedy and impose a positivity constraint on the esti-
mated density. This is not innocuous. The range of admissible skewness values is restrictive
for option pricing applications.? Finally, models based on Gram-Charlier do not provide a

change of measure linking the historical and risk-neutral measure.?

2Jondeau and Rockinger (2001) establish that their restriction imply that skewness takes values within
(—1.0493,1.0493). Leo6n et al. (2006) establishes the impact of this restriction for option pricing.

3Note also that closed-form option prices typically result from a first-order approximation. This may
not be relevant in practice for option pricing but the impact of this approximation on estimates of implied
skewness has not been discussed.



Bakshi and Madan (2000) provide a non-parametric measure of skewness (and other
higher-order moments) implicit from option prices. This was exploited by Bakshi et al.
(2003), who focus on measures of skewness in the cross-section and on the link with index
skewness. Dennis and Mayhew (2000) consider determinants of the cross-section of skewness
and Rompolis and Tzavalis (2008) attribute the bias in volatility regressions to the risk-
neutral skewness. Christoffersen et al. (2008) explores the information content of option
data for future stock betas. However, the pricing or hedging implications of skewness for

option prices cannot be handled within this model-free framework.*

The relationship between the volatility spread and the equity premium has been at-
tributed to variance risk (Bakshi and Kapadia (2003), Bollerslev et al. (2008), Carr and Wu
(2009)) or to a left-skewed and fat-tailed returns distribution (Bakshi and Madan (2006),
Polimenis (2006)).° While these different channels explain the volatility spread, they do not
have the same implications for risk-neutral skewness. Our results suggest that an understand-
ing of the volatility spread, and its relationship with the compensation for risk, demands an
understanding of risk-neutral skewness. Intuitively, both the price of risk and the volatil-
ity spread are related to the risk-neutral skewness. This should help discriminate across
competing theories of the observed volatility spread. Clearly, understanding the source of

risk-neutral skewness is a key research objective.

The rest of the paper is organized as follow. Section II introduces the Homoscedastic
Gamma model [HG] as well as the SDF and contains the main asset pricing implications.
In particular, it contains the mapping between parameters under each measure and derives
the option pricing function. Section IIT presents the data. Section IV introduces the im-
plied volatility and skewness surface and explores its empirical properties. We introduce
practitioner’s analog in Section V and compare their in-sample, out-of-sample and hedg-
ing performances in Section VI. Section VII perform tests the implications for the equity
premium and the volatility spread, as well as the implications for Delta-Hedged gains, and
discusses the results in the context of equilibrium model. Section VIII provides estimates of

the term structure of volatility, skewness and kurtosis. Section IX concludes.

4Note, also, that this approach requires approximations of integrals over the moneyness domain. Although
Dennis and Mayhew (2000) consider the impact of sampling error under the null of the BSM model, the
accuracy of skewness estimates are unknown in the presence of measurement errors or in a non-gaussian
setup.

5Bakshi and Madan conclude that historical skewness do not play an important role in the determination
of the volatility spread but they do not consider risk-neutral skewness.



II The Homoscedastic Gamma Model

This section studies the Homoscedastic Gamma model for stock returns. Our specification
is a close analog to Heston (1993) which is also based on the Gamma distribution. The
model possesses three crucial properties that makes it a natural choice. First, skewness is
parameterized directly and is independent of the mean and variance. Second, its density and
characteristic functions are known in closed-form. Third, the distribution of returns remains
HG for all investment horizons under both the historical and the risk-neutral probability
measures whenever the SDF is exponential in aggregate wealth. In particular, this delivers
an explicit mapping between moments under each measures. Finally, we obtain closed-form
prices for European options of any maturity as a function of volatility and skewness. We
can then efficiently invert option prices to obtain implied volatility and skewness surfaces.
Indeed, when setting skewness to zero our model simplifies to the BSM and we recover the

usual BSM implied volatility curve.
A Returns Under the Risk-Neutral Measure

We assume that stock prices, S;, follow a discrete-time process whereas the logarithm of

gross returns, R;, over an interval of time A, say, follows

Rign = In(Sia/Si) = " A+ Vor2Aef (1)
eian ~ SG(a”(A)),

under the risk-neutral measure where p* and o*? are the risk-neutral drift and variance,
respectively. Return innovations, €, , follow a Standardized Gamma [SG]| distribution with
zero mean, unit variance and skewness a*. The SG distribution is defined in terms of the
Gamma distribution, I'(k, 0), as

2 2 4
X~SGla)e —(X+—)~T|—,1), 2
@ 200 2o () 2)
where the scale parameter is fixed to ¢ = 1. Given that the Gamma distribution has mean
k6, variance k6% and skewness 2/vk, it follows that one-period returns in the HG model
have mean p*A, variance 0*?A and skewness a*(A). We express skewness as function of
A to reflect the choice of the interval’s length. A key simplifying assumption is that the

conditional distribution of returns does not vary through time. Still, the model could be

thought as holding conditionally, with parameters p;, 0, and «o; indexed by time.



B Returns Under The Historical Measure

We provide a change of measure for which the historical distribution of stock returns also
belongs to the HG family. The result holds when the SDF is exponential-affine in aggregate
wealth returns, which is the case in economies with power utility. Under this assumption, we
obtain transparent interpretations of risk-neutral moments in terms of the historical moments
and of the compensation for risk. This differs from Heston (1993) who considers the case
of an SDF from a CRRA economy. Comparing parameters, we find that the risk-neutral
volatility is greater than the historical volatility when the equity premium is positive and
skewness is negative. Also, the volatility spread increases with the equity premium and with
the negative asymmetry of returns. When skewness is zero, and returns are Gaussian, only

the mean is shifted and the variance is the same under both measures.

First, assume that aggregate returns follow a HG distribution under the historical measure
Ria =In(Siin/S) = A+ Vo2 A eppn, (3)

where g, a ~ SDG(a(A)). Next, define the SDF as
M;=exp(—v(A)e,+ U (v (A))), (4)

for some v and where ¥ is the logarithm of the conditional moment generating function
of Vo2A eia. Then, this SDF defines an Equivalent Martingale Measure (EMM), under
which the discounted stock price is a martingale, for a unique v, as stated in the following

proposition.

Proposition 1. If stock returns follow Equation 3 and if the Stochastic Discount Factor
belongs to the class defined by Equation 4 for some v, then, this SDF' defines an Equivalent

Martingale Measure for discounted stock prices if and only if

2 N 9(4A)
a(A) VoA g(A) -1

v(A) = — (5)

where
g(A) =exp (—%a (A)* + M) , -

See the Appendix for all proofs. This is a direct application of results from Christoffersen
et al. (2009). Note that the price of risk, v(A), converges to the usual result, (1 — r)/0?,
when skewness tends to zero. Also, this result does not imply that the EMM is itself unique

but that only one solution exists within the class defined by Equation 4.

7



The following Proposition establishes that stock returns are HG under both measures

and characterizes the link between parameters of returns dynamics under each measure.

Proposition 2. If stock returns under the risk-neutral measure follow Equation 8 and if the
Stochastic Discount Factor is as in Equation 4 for v given in Proposition 1 then stock returns
are given by Equation 2 and 3 under the risk-neutral and the historical measure, respectively,

with ] =g, — Egl[gt] and where parameters under both measures are linked as

Ay L 9B(8) -1
7T @)
pr(A) = /~H‘2m
a*(A) = «a(A)

where we use B(A) = a(A) ‘/TZ to simplify the notation. Note that we have o* — o and

2

,u*—>p+%c7 when o — a* — 0.

Due to risk-aversion and non-normality in returns, the risk-neutral volatility differs from
its historical counterpart at any horizon. The volatility spread depends on the degree of
returns asymmetry, «(A) and the degree of risk aversion through the risk-premium, (p—17),
implicit in g(-). Whenever skewness is negative and the equity premium is positive, the
risk-neutral volatility is greater than the historical volatility (i.e. ¢* > o). These results
are consistent with Bakshi and Madan (2006) and Polimenis (2006). Finally, because of the

specific choice of SDF, the risk neutral skewness is the same as the historical skewness.®

To see the relationship between v and skewness, consider a first-order expansion of Equa-

tion 5 around «(A) = 0. For small deviations around the symmetric case we have

(@)~ 2 L M T B g, (6)

Note that v (A) tends toward the usual result, 5", when skewness approaches zero. Then,
as expected, v can be interpreted as the price of risk. Moreover, it is a function of the equity

risk premium, of the volatility and of skewness.

Another way to see the link between the equity premium and the volatility spread is to
note that

ot —o ——
+ U*2A€r+A7

a*v A

60One can show that an SDF exists such that the returns distribution belongs to the HG family under

both measures with both the variance and the skewness parameter shifted. However, this SDF is not in
general within the exponential-affine class and the link between moments is not transparent.

In (Sera/St) = pA+2




where the middle term converges to zero as skewness approaches zero.” Taking expectations
and re-arranging reveals the following important restriction between the equity premium,

the volatility spread and the risk-neutral skewness,

*

o —0

/A (7)

EF I (Sya/S0)] — B2 (Siaa/S))] = ~2

In the HG model, the volatility spread is solely due to the presence of skewness and not
to the presence of a variance risk premium whereas volatility is time-varying and priced by
investors. Indeed, the volatility spread and the equity premium increase when skewness is
more negative. Then, in the presence of non-normality the predictive power of the volatility
spread is conditional on skewness. Theory predicts that the correct predictor of the equity
premium is the ratio of the volatility spread to skewness instead of the spread itself. In
particular, in predictive regressions, the constant should be zero and the predicted value for
the coefficients is -2 (see Section VII).

C' Option Prices

We are now ready to provide a closed-form price for European style contingent claims on
a stock. This simple homoscedastic model is stable under temporal aggregation. That is, if
returns over two successive intervals follow a SDG distribution then returns over the sum of
the intervals also follow a SDG distribution. This is a key property to obtain closed-form
option prices for all maturities. Consider (log) stock returns over an arbitrary investment

horizon H. Define M = % as the number of time steps over this horizon. Then,

Ry =300 Ripja = In(Seyan/S)
— "M A+ oA £,

where the return innovation, &7 ,,, is given by?®
M«
* _ t+jA *
e =Y 22 ~ SDG(af(A)/VM).
= VM

A no-arbitrage price, C;(K, H), of a European call option with strike price K and matu-

rity H can be obtained from the discounted risk-neutral expectation of the terminal payoff,

Cy(K,H) = E? [exp(—rH) max (S gy — K,0)].

"In the limit, as skewness becomes zero, stock returns follow the usual square-root process.
8This follows directly from the fact that the Gamma distribution is summable.



As usual, the solution is function of the other model parameters: the risk-free rate, r, the
risk-neutral volatility, c*(A), and the scaled skewness (A). Moreover, the solution depends
on the direction of asymmetry. Specifically, the case with no skewness corresponds to the

BSM formula while we have the following proposition otherwise.

Proposition 3. If the logarithm of gross stock returns follows a Homoscedastic Gamma
process under the risk-neutral measure, as in Fquation 2, then the price of a European call
option 1s

Ci(K,H) = S,Cy; — "MKy, (8)

where, if the skewness is negative (i.e. a(A) <0),

Chy = P(%,dﬂA)) (9)

Coy = P(%,@(A)), (10)

and, if the skewness is positive, (i.e. a(A) >0),

H
Cu = @5 a) (1)
H
Cu = Q). (12)
The functions P(a,z) and Q(a, z) are the reqularized gamma functions® defined by
_ a,2)
P(a,z) = I'a)
_ I'(a,2)
Q(CL?Z) - F(a) )

respectively, with y(a, z) and T'(a, 2) the upper and the lower incomplete gamma functions®

and where dy and dy are defined as

In(1-6(A)o*(A
o) In(K/S) — (ry + 0535 E0) B
’ B(A)o*(A) ’

di(A) = do(A)(1 = B(A)a™(A)).

9We use the standard notation for the regularized gamma functions, P(a,z) and Q(a, 2), possibly at the
cost of some confusion with the usual notations for the historical and risk-neutral probability measures P
and Q.

1ONote that we have P(a,z) + Q(a,z) = 1, which is a convenient property when computing derivatives
(see below).
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III Data

This section introduces the data and presents some summary statistics. We use prices of
call options on the S&P500 index observed on each Wednesday in the period from 1996 to
2004. Using Wednesday observations is common practice in the literature (e.g. Dumas et al.
(1998)) to limit the impact of holidays and day-of-the-week effects. Consequently, the return
horizon in Equation 2 is set to one week in the following. We exclude observations with less
than 2 weeks to maturity, no bid available or with zero transaction volume. We also filter

observations for violation of upper and lower pricing bounds on call prices.

Table II displays the number of contracts, the average call price and the average im-
plied volatility across moneyness (Panel (a)), across maturity (Panel (b)), and a detailed
cross-tabulation across moneyness and maturity (Panel (c¢)). The Black-Scholes IV curve
is asymmetric in the overall sample, displaying a rising pattern with moneynesss, and sig-
naling a sharp left skew in the risk-neutral distribution of returns. Also, the IV curve is
flat, or slightly decreasing, with maturity. Disaggregation reveals variations in the shape
of the IV curve at different maturities. Starting from the shortest maturity, the IV curve
initially follows an asymmetric smile with higher volatility values for in-the-money options.
Hereafter, the asymmetry increases as we consider longer maturities and the (average) IV

curve eventually becomes monotone in moneyness for the longer maturities.

Note that the composition of the sample varies with maturities. Out-of-the-money con-
tracts dominate for long maturities while in-the-money contracts dominate for short ma-
turities. This is due to the issuance pattern of new option contracts. Newly issued, long-
maturity call options are typically deep-out-the-money, in anticipation of the index upward
drift through time. As we consider shorter maturities, the composition becomes more bal-
anced. At the shortest horizon, most call options are deep in-the-money, since the exchange
does not regularly issue short horizon out-of-the-money call options. This implies that the
average IV curve reflects, in part, a composition bias with most in-the-money options hav-
ing short maturities and most out-of-the-money options having long maturities. Because
short maturity options have higher implied volatility on average, this makes the average
IV curve more smirked.!! Finally, Panel (a) of Figure 1 presents the number of available
observations for each day, which averages around 40 and typically ranges between 20 and
50 contracts. Panel (b) decomposes this number and presents the proportion of contracts in

each moneyness category.

1 This highlights the importance of using a model that can handle maturity differences. In particular,
models based on density approximation are not robust to this composition effect.
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IV Implied Volatility and Skewness Surface

In the context of the BSM model, it was recognized early that inverting option prices for
the volatility parameter provided a good measure of future returns volatility. However,
the HG model offers a separate parametrization for volatility and skewness allowing us to
easily measure both the volatility and skewness implicit in option prices.!? In this section,
we study the trade-offs involved between volatility and skewness when fitting option prices.
We first analyze how the implied volatility curve varies across different values of skewness
and, second, how the implied skewness curve varies with volatility. The results are intuitive.
The impact of skewness on implied volatility is asymmetric, depending both on the sign of
skewness and of moneyness. In particular, negative skewness tilt a smirked IV curve toward
a symmetric smile. On the other hand, the impact of volatility on implied skewness displays

a more complex pattern.

An important conclusion from this section is that the HG model exhibits enough flexibility
to restore the symmetry of the volatility smile. In other words, variations of the IV curve
can be interpreted directly in term of skewness within the HG model. Moreover, both the
level and the shape of the IV curve are sensitive to the choice of the skewness parameter.
In particular, this implies that empirical studies of the volatility spread, who relies on the
level of at-the-money BSM implied volatility, are affected by measurement errors due to the

impact of skewness.
A Inverting The Implied Volatility and Skewness Surface

Volatility and skewness cannot be inverted uniquely from a single option price. Instead,
for each strike price, the HG model implies a function describing the set of volatility and
skewness pairs matching the observed price: a volatility-skewness curve. This is in contrast
with the BSM model where any given option price can be inverted uniquely for the volatility
parameter. Of course, if the HG model is true, using options with different strike prices
would identify uniquely a volatility-skewness couple. In fact, only two different strike prices
would be sufficient for this purpose. In practice, the HG model extends the BSM model in
only one direction, allowing for a skewness parameter. Other deviations from the underlying
assumptions cause the volatility-skewness curve to vary across moneyness in such a way that
no unique couple can match every observed price. Thus, in the HG model, the counterpart to

the IV curve is the implied volatility and skewness surface. This surface is the representation

12Gee Bates (1995) for a review of the literature on the forecasting of volatility using option prices and
Andersen et al. (2005) for a review of volatility measurement from stock returns. See Kim and White (2003)
for a discussion of the lack of robustness of the usual sample skewness estimator

12



of the set of volatility and skewness pairs matching the observed option prices for varying

strike prices.

To draw the volatility and skewness surface, we first pick a value of skewness from a
grid. Then, each day and for each available strike price, we invert the option price for the
volatility parameter and obtain an implied volatility curve. As we vary the value of skewness
we obtain different IV curves and, together, they yield an implied volatility and skewness
surface. A section of this surface at a given value of skewness is one possible IV curve.
Each day, these different IV curves are alternative, and equivalent, representations of the
data. Each embodies all the information about the distribution of returns and, in addition,
measurement errors due to transaction costs, illiquidity and asynchronous trading. The next

section provides the results.
B Impact Of Skewness on Implied Volatility Curves

The average volatility-skewness surface is given in Figure 3 in level (Panel (a)) and in
percentage deviations from the benchmark BSM IV curve (Panel (b)). Panel (a) displays
the usual smirk in the IV curve when skewness is zero. More interestingly, it shows that the
average IV curve is flat for values of skewness around -1.'3 Next, consider the deviations from
the BSM curve in Panel (b). The case with skewness equal to zero corresponds to a straight
line at zero. As we consider values of skewness away from zero, the IV curve is tilted one way
or another depending on the sign of return asymmetry considered. For negative values of
skewness, the IV curve is tilted toward positive values of moneyness. Conversely, for positive
values of skewness, the IV curve is tilted toward negative values of moneyness. In other
words, as we shift probability mass toward the left (right) tail of the return distribution,
the implied volatilities required to match observed prices increase (decrease) for out-of-the-
money calls and decreases (increases) for in-the-money calls thereby tilting the IV curve back
toward a symmetric smile. In the extreme cases, allowing for non-zero skewness can raise or
decrease measured implied volatility by more than 15% relative to the BSM case. Clearly,

the HG model is sufficiently flexible to capture the skewness implicit in option prices.
C' Results For Different Option Maturities

Next, Figures 4 (a)-(e) present implied volatility and skewness surfaces within different
maturity groups while Figures 5 (a)-(e) report the same results but in percentage deviations
from BSM values. Starting with skewness equal to zero, which corresponds to the BSM

case, we see the the shape of IV curve varies substantially across maturities. As discussed

3The curve is not strictly flat and this may be due to the impact of kurtosis, or to a composition effect.
We discuss these possibilities below.
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in section III, the average BSM IV curve is a slightly asymmetric smile for short maturities:
implied volatility obtained from in-the-money options is higher than for out-of-the-money
options. The smile then gradually disappears as we increase maturity and the IV curve
eventually becomes smirked. For negative values of skewness, and for any maturity, the
IV curve is tilted toward a symmetric smile. For short maturities, small negative values of
skewness are sufficient to establish a symmetric smile. As we increase maturity, however,
more negative values are necessary. Looking at deviations from the case with zero skewness
(Figure 5) we see that the impact of a given variation in skewness decreases as we increase

maturity.
D Impact Of Volatility On Implied Skewness

Figures 6 (a)-(f) present implied values for skewness across different values of implied
volatility. For at-the-money options, there is no tradeoff between volatility and skewness.
However, the impact of volatility on implied skewness is asymmetric and highly nonlinear
on both sides of the moneyness spectrum. As the volatility of returns decreases, and the
probability mass is closer to the mean, the skewness value required to match observed price
increases for out-of-the-money options, implying a higher right-tail, but decreases for in-the-
money options, implying a lower left-tail. The reverse is true when we increase the value
of volatility. In both cases the impact is not monotonic as we move away from at-the-
money. Rather, the pattern follows a sharp V-shape, or inverted V-shape, where changes of
volatility have no impact on implied skewness for at-the-money options, the largest impact
for intermediate moneyness, and a lower impact for distant moneyness. This is likely an
indication of a trade-off between the skewness and the kurtosis in the HG distribution to
match observed prices. Finally, the impact of volatility on implied skewness rises with the

option maturity.

V Practitioner’s Models

The previous section shows that the implied volatility and skewness surface can be described
as the smooth tilting of the IV curve across values of skewness. However, while the HG
model provides enough flexibility to match the skewness present in option data, the IV curve
typically remains slightly curved. This is may due to excess kurtosis. In this section, we
propose HG-based option pricing formula that are robust to the presence of excess kurtosis.
Intuitively, we consider a one-term expansion of the HG distribution that allows for kurtosis.
Note the similarity with the P-BSM model. It is a two-term expansion designed to capture

observed skewness and kurtosis deviations from the Gaussian case.
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The practitioner’s variants of the BSM model [P-BSM]| and of the HG model [P-HG] cap-
ture deviations from the Gaussian or HG distributions by modeling volatility as a quadratic

function of moneyness. That is, in the P-BSM case, we have

(&) = ool K) (1 + 71 (e, K)E + 72 (a, K)E),

and, in the P-HG case, we have

(&) = oo(r) (L +n(K)€ + 72(k)E%)

where £ is moneyness and « and k are the skewness and excess kurtosis of the risk-neutral

distribution, respectively.

The practitioner’s IV curve smooths through the cross-section of option prices, ignores
local idiosyncracies and focuses on the impact of higher-order moments. This approach is
pervasive because of its empirical performance and, also, because its parameters (i.e. oy,
7 and 7,) are usually interpreted in terms of the variance, skewness and kurtosis of the
true underlying risk-neutral distribution. For these reasons, parameters of the IV curve are
commonly estimated without restrictions. In the following, we document that estimates of oy,
~1, and 7, vary when we allow for skewness. This contrasts with the usual interpretation of v,
as a measure of skewness. The remainder of the section provides restrictions on parameters

of the IV function such that we can recover direct estimates of o and x from option prices.
A Unconstrained IV Curves

We evaluate empirically the impact of skewness on estimated IV curves. That is, we
document how the parameters og(--- ), 71(- -+ ) and ,(- - - ) varies when we vary the skewness
of the HG density. To do so, fix the value of a and estimate the P-HG model at each date.
That is, choose values of 0y, 71 and 72 that minimize squared pricing errors. Next, average
the unconstrained estimates through time. Finally, repeat the exercise for different values of

skewness and trace the relationships between skewness and estimates of o, v, and 7, .

Figure 7 presents the results across moneyness categories where, for simplicity we defined

- In(S/K)(—rT)
/T ’

Panel (a) presents average estimates of 0y. For contracts maturing at the next settlement

date, at-the-money implied volatility is 20% on average when skewness is zero. When skew-

ness decreases to -3, estimates of at-the-value volatility increase to 23%. Intuitively, shifting
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some probability mass toward one side of the distribution involves a trade-off for pricing
in-the-money versus out-the-money options. For a constant level of skewness, this tension
can be reduced by an increase in the level of volatility. A similar pattern occurs at longer
maturities, but the impact of skewness gradually decreases. Panel (b) presents the results
for the asymmetry parameter. In line with intuition we find that ~; varies linearly with the
value of 3 : both parameters are measures of the underlying skewness. Finally, Panel 7c

shows that 7, also varies substantially with skewness but the relationship is not linear.'

The impact of skewness on the IV curve parameter implies that the information on the
underlying risk-neutral moments will be shared across unrestricted parameters estimates.
Furthermore, the fact that estimates of a and of 7, are (linearly) correlated suggests that
they are poorly identified. The following section introduces a framework which lead to
restrictions on g, 71 and 7, such that only & can capture the risk-neutral skewness. Absent
these restrictions, each parameter estimates of the IV curve, og, 71 and s, is affected by
skewness and kurtosis (i.e. @ and x). In contrast, the restrictions developed below leads to

the unambiguous identification of skewness.!®
B HG Model With Excess Kurtosis

We now provide a rigorous justification of the P-HG model when the true distribution
displays excess kurtosis. We can characterize sufficient restrictions on the parameters of the
IV curve such that & is identified as the risk-neutral skewness in this more general model
as well. In this context, parameters of the IV curve are restricted to (known) functions of
excess kurtosis. In other words, any deviation from a flat IV curve can only be linked to
deviations of x from zero. As a by-product, we obtain an estimator of the kurtosis in excess

of the Gamma distribution.

Intuitively, we assume that the true density of returns can be represented by an Edgeworth
expansion around the Gamma distribution. This is similar to earlier work using the Gaussian
distribution (Jarrow and Rudd (1982), Corrado and Su (1996)) but the Gamma distribution
allows an exact match of the first three moments. We then impose the equality of the option

pricing formula under the true model and the P-HG model for at-the-money options.

Suppose that the true evolution of stock returns under the risk neutral measure can be

This contrasts with the theoretical results of Zhang and Xiang (2005). They argue that in the Gaussian
case and up to a first-order approximation oo (3, ) is linear in the risk-neutral volatility, v1 (53, ) is linear in
skewness, and y2(3, k) is linear in kurtosis. However, they assume that the skewness and excess kurtosis of
the underlying distribution can be chosen independently while in fact there is a tight link between the two
for any given correctly specified density. Moreover, they linearize around the case where 0 = 0 and this may
lead to a poor approximation.

5Note that merely imposing 71 («, k) = 0 does not identify an estimator of a with skewness.
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described as
Rr=(r—0T+ J*ﬁy,

where §* is a risk-adjustment term, y is a random variable with mean zero, unit variance,
skewness, o and kurtosis, A5. We allow for deviations from HG case and assume that the

probability density of y is given by

* 3a*?
Ao = U7 d*h(y)
4! dy*

(13)

where h(y) is the standardized gamma density. This is a one-term Edgeworth expansion of
standardized gamma distribution around the case with no excess kurtosis. If y is normally
distributed, then o* = 0 and 6* = ‘772

from a flat skewness and volatility surface documented above. These deviations are linked

. This approach captures in a rigorous way deviations

to fat tails in the distribution of returns in excess of the Gamma distribution but ignores
deviations beyond the fourth moment. Our objective here is to derive explicitly the function
0o(k), 71(k) and 72(k). Proposition 4 builds on a no-arbitrage argument and provides a

closed-form characterization of option prices and of the risk-adjustment term.

Proposition 4. If the logarithm of gross stock returns has the density given by Equation 13,
then the price of a call option, C*(K,T), with maturity T, underlying price Sy and strike

price K s

C*K,T) = SyP(a*,d})—e ™" (1+T%0*ky) KP (a*,d3)
2 %

T
+ ke 'TK g

1 1
T3 {—h"(d;) + a*§a*h'(d§) - a*2§a*2h(d§)} ,
2

when o < 0 and

C*(Kv T) = SOQ (CL*, d;) —e (1 + T20‘*4/{4) KQ (CL*, d;)
T?c* 1 1
— /ie_TTK—l 23 [—h”(d;) + 0*§a*h'(d§) — 0*2§a*2h(d§)] ,

2&
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*2
. Ap— 88
when o > 0. We define the excess kurtosis, k = —'—, and

In(K/Sy) — [r + %} T +In(1+ T%0k)
2

dy =
2 O'ﬁ
. 1
. T

a = T,

where h is the density of the standard gamma distribution.

C'  Identified practitioner’s HG

We are now looking for the restrictions on the parameters of the P-HG model such that
estimation of (3 delivers a convergent estimate of the risk-neutral skewness 3*. Zhang and
Xiang (2005) provide the restriction for the case where the Gaussian density is used in the
approximation. To find the link between the parameters of the P-HG model with parameters

of the true distribution, we impose the following restrictions

C*(K,T) = C(K,T)
oC*(K,T) _ 9C(K,T)

0K N 0K
O*C*(K,T)  9°C(K,T)
OK2 N OK2

when evaluated at-the-money (i.e. K = Spe’?). These restrictions are given in the appendix
but note that they are trivially satisfied whenever x = 0 since in this case the HG model is
true and the IV curve is flat. Of course this corresponds to the case o9 = ¢*, @ = a* and

7 = 72 = 0. We linearize the restrictions around this point (i.e. x = 0) and obtain

"% _ A(o,a)k (14)
g

v = Bi(o, ) UOU_ 0 + By(o,a)k (15)

72 = Ci(0,0) =2 4 Cy(0, )71 + Cs(0, )r, (16)

where the coefficients are given in the appendix.'® Then, small deviations of the underlying

density from a HG distribution lead to deviations from a flat implied volatility and skewness

16We differ from Zhang and Xiang (2005) who linearize the restrictions around o = 0. Arguably, lin-
earizing around the HG distribution is likely to provide a better approximation than linearizing around the
deterministic case.
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surface. This highlights the impact of excess kurtosis on the estimates of oy, 71 and . It
also makes clear that deviations from a flat IV curve are only due to excess kurtosis. More
importantly, these restrictions ensure that « corresponds to the risk-neutral skewness and

that the practitioner’s HG model conforms to the true returns density.

VI Option Pricing Results

In this section, we estimate each model and compare their performance. The results show
that the HG framework substantially improves in-sample, hedging and out-of-sample perfor-
mances. The improvements are robust if we impose identification of the skewness parameters,
as discussed in the previous section. Indeed, the improvements remain when the only de-
viation from the HG model is an adjustment to kurtosis that is constant through time.
Out-of-sample, imposing the identifying restrictions does not degrade pricing performance.
In other words, a fixed implied volatility and skewness surface combined with variations in

skewness delivers most of the in-sample and out-of-sample improvements.

Overall, our approach delivers a reliable measure of skewness while offering improved
forecasting and hedging performance. In contrast, the P-BSM model does not allow for
sufficient flexibility to match the skewness implicit in the data and offers lower hedging
and out-of-sample performance. While the more general models that allow for variations in
excess kurtosis perform better in-sample, these improvements disappear out-of-sample. This
implies that skewness captures most of the persistent deviations from the Gaussian case and

that excess kurtosis and other deviations are transitory.

A Description Of Models

We evaluate the basic HG model and the usual P-BSM model. We also include three

different versions of the P-HG model based on the quadratic IV curve,

01(&) = oo(1 + 1€ + 1E€?).

where the first version, P-HG1, imposes the simple restriction that v, = 0. This is another
way to see that the usual interpretation of ; as a measure of skewness, while intuitive,
is misleading. The second model, P-HG2, imposes the restrictions derived in the previous
section and delivers an estimate of skewness robust to excess kurtosis. Finally, P-HG3 is

unrestricted.

We also introduce “smoothed” versions of these models where some parameters of the

IV curves are held constant through the sample. First, the smoothed version of the P-HG1
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Table I: Summary of P-HG specifications

P-HG | o(§) = 004

P-HG1 | (&) = 0041 + 72.4£7)

P-HG2 | 0(§) = oo(ou, k) (1 4+ vi(u, £e)€ + a0, £)E?)
P-HG3 | 0(§) = 004(1 4+ 71,6& + 724&%)
SP-HG1 | 0(&) = 004(1 + 72&?)
SP-HG2 | o(§) = ao(as, &) (1 + vi (v, £)E + va(ou, £)E?)
SP-HG3 | 0(&) = 00.(1 + (710 + 71104)€ + (720 + 7210)E?)

model, labeled SP-HG1, still imposes that 7, is zero but holds v, constant through time.
Next, SP-HG2 still allows for a flexible fit of skewness through time but keep excess kurtosis
constant through time. We include this model as a simple way to evaluate the relative
importance of skewness and kurtosis for option pricing and hedging. Finally, the SP-HG3

model imposes the following structure on the IV curve,

o(&) = oo(1 + (Y10 + 1110)E + (Y20 + 1210)E?).

which is a simple attempt to implement the observation made in Section V that parameters
of the IV curve vary with skewness. Finally, estimation is performed through minimization
of squared pricing errors in the weekly sample. The following table summarize the various

specification.

B In-Sample RMSE
B.1 HG And BSM Models

Table IV presents in-sample Root Mean Squared Errors [RMSE| where each results is
expressed as a percentage of the BSM’s RMSE. Panel (a) presents results across moneyness
while Panel (b) presents results across maturities. Although the most flexible (i.e. P-HG3)
model achieves an RMSE which is 14% of the benchmark, most of the improvement comes
from using the HG distribution: the simpler HG model’s RMSE is 37% of the BMS’s RMSE

but with only more parameter measuring skewness.

B.2 Practitioner’s Variants

Interestingly, even with one extra parameter, the P-BSM does not offer much improve-
ment (35% vs 37%) over the straightforward HG model. The models offer similar results

across maturities but their performances differ across strike prices. The P-BSM improves
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pricing for in-the-money options at the expense of larger errors for other moneyness groups.
On the other hand, the P-HG1 and the P-HG2 models achieve RMSEs that are 28% and
23%, respectively, but with the same number of parameters as the P-BSM model. However,
in contrast with the P-BSM model, the lower errors for out-of-the-money options are not
compensated by higher errors for options that are nearer the money. Thus, models based on
the HG distribution appear to offer more flexibility than the practitioner’s BSM in choosing

risk-neutral skewness and kurtosis but with equal or less parameters.

Although the naive ; = 0 restriction seems reasonable, it fails in practice with larger
RMSE. Comparing models, we see that imposing the correct identification constraints (P-
HG2) provides substantial improvement over the P-HG1, especially for short maturity, out-
of-the-money call options. Finally, with one more parameter, the P-H3 offers much lower

in-sample RSME (14%) than any other model across all moneyness and maturity categories.

B.3 Smoothed Coefficients

Smoothed models have less parameters but the SP-HG2 model still improves (31%) over
the P-BSM model but with less parameters. This model has the flexibility to fix skewness
from date to date but imposes a constant excess kurtosis. That is, deviations of the IV
curve from the HG case are kept constant. Thus, in-sample, a flexible fit of the underlying
risk-neutral skewness is key while variations in kurtosis are less important. Finally, while
more flexible HG-based models improve the in-sample fit, the next section show that this
result is not robust out-of-sample, indicating a relatively minor role for information beyond

the third moment.
C' Out-of-sample RMSE

The improved performance of models based on the HG distribution may be due to over-
fitting and may not hold out-of-sample. This section compares the out-of-sample perfor-
mance of each model. First, we estimate each model from options in a given week.!” We
then fix these parameters and price options observed in the following week. Table V presents
one-week out-of-sample RMSE for each model across strike prices (Panel (a)) and across ma-
turities (Panel (b)).

Out-of-sample, the improvement in fit relative to the BSM decreases for all models. This
indicates that some of the deviations from the Gaussian case are transitory. The lowest
relative RMSE is now 57%, obtained for the P-HG3 model, with 4 parameters. On the other
hand, the worst result is 68%, obtained for the P-BSM model, with 3 parameters. This
add to the evidence that the practitioner’s version of the BSM model does not properly fit

1"For smoothed model, we estimate parameters that are held constant through the sample in a first pass.
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the persistent skewness and kurtosis present in the data. Strikingly, the SP-HG2 model,
which uses 2 parameters and fixes excess kurtosis through the sample, actually improves
out-of-sample RMSE (64%) over the more flexible P-HG2 and P-BSM models. Some of the
variations in excess kurtosis required to match (in-sample) option prices in this category are
transitory, degrading out-of-sample performances. Restricting parameters of the IV curve to

capture that part of its variations due to skewness improves the out-of-sample fit.
D Hedging Errors

Hedging errors implied by each model may convey more economic significance to risk-
managers. Below, we verify that allowing for skewness significantly alter hedging strategy
theoretically, and improves hedging results empirically. Also, we verify that any improved
hedging performance persists at horizons beyond one week. The SP-HG2 model, with 2
parameters and where skewness is separately identified, offers the next to best performance.
This highlights, again, the value of theoretically sound restrictions. Again, we find that the
unrestricted P-HG3 model performs best.

D.1 Comparing The Greeks

As in the BSM model, we can compute explicitly the sensitivity of option prices to
changes in the underlying parameters, including the sensitivity to changes in skewness. We
provide these in the appendix. These derivatives depend on the direction of asymmetry and
everywhere the symmetric case (i.e. § = 0) leads to the standard results from BSM. To see
the impact of skewness, we draw options sensitivities across strike prices for different values
of skewness. In the computations, we use the average values of volatility, of the interest
rate and of the index level. Figure 8 presents results for the first and second derivatives
with respect to the underlying, Delta and Gamma, as well as the derivative with respect to
volatility, Vega. The results are reported in levels in the top panels (Panel (a) to (c)) and

in percentage deviations from the symmetric case in the bottom panels (Panel (d) to (f)).

First, the pattern of Delta across moneyness is familiar. The sensitivity is small for deep
out-of-the-money options but grows to close to one for deep in-the-money options. Varying
skewness does not alter this picture but looking at levels hides significant deviations. At
skewness equal to -2.5, which occurs in our sample, short positions in the stock are as much
as 20% higher for some out-of-the money or near to at-the money options. Next, the impact
on Gamma is dramatic. In the symmetric case, Gamma appears quadratic in moneyness
with highest values for at-the-money options. Decreasing skewness lowers Gamma for in-
the-money options but increases Gamma for out-of-the-money options. When skewness is

-2.5, Gamma is as much as 50% lower then when skewness is zero for in-the-money options
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and 50% higher for out-of-the-money options. Finally, skewness has an asymmetric impact
on the sensitivity of options to variations in volatility. When skewness is -2.5, Vega decreases
by more than 20% for out-of-the-money options but increases by nearly 20% for in-the-money
options. Clearly, ignoring the impact of skewness can lead to large hedging errors, which is

confirmed empirically in the next section.

D.2 Comparing Hedging Performance

We follow Dumas et al. (1998) and compute hedging errors as
e = ACH — ACT

which is a measure of the impact of changes in model errors from ¢ to ¢ + h on the hedging
strategy.'® By this measure, a good model delivers hedging errors that are close to zero on
average. Table VI and Table VII present the results for hedging horizons from one to four
weeks ahead (i.e. h =1,2,3,4).

Consider hedging errors at the 1-week horizon (Table VIa). First, the BSM model appears
to perform well, with hedging errors averaging 1.6 cents. But this hides important disparities
across maturities. Average hedging errors range from 36.7 cents for out-of-the-money options
to -39 cents for in-the-money options. Moreover, the more flexible P-BSM model has higher
overall hedging errors (-4.6 cents) with substantial average errors (-18.8 cents) for the lowest

strike prices.

When considering the overall mean and the dispersion of hedging errors across maturities,
the best performing models are variants of the P-HG model. Identification restrictions for
skewness perform well. In particular, the SP-HG2 model offers both low overall hedging
errors and low dispersion across moneyness. Averages remain below 10 cents across strike
prices. Table VIb draws a similar picture at the 2-week horizon. The P-BSM model sees
its average performance deteriorate to -8.2 cents and mean hedging errors now range from
-21.8 to 7.1 cents. Again, HG-based models offer better performance. The SP-HG2 model
still offers the best performance: the mean pricing error is 0.002 cents in the entire sample
and ranges from -13.6 cents to 8.6 cents across moneyness. Finally, results at the 3 and 4-
week horizons (Tables (a) and (b)) quickly deteriorate for the BSM and the P-BSM models.
However, the SP-HG2 model still performs well. The overall averages at 3-week and 4-week

horizons are -4.3 cents and -2.1 cents.

8This abstracts from the hedging errors due to discrete adjustments. See Galai (1983) for details.
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E  Discussion

Overall, the results favor the more general P-HG3 model. It offers lower in-sample and
out-of-sample RMSEs as well as better hedging performances at all horizons. This contrasts
with the frequent observation that the P-BSM model offers sufficient flexibility. Indeed,
option prices based on the HG distribution offer better performance than the P-BSM with
as many parameters (P-HG1 and P-HG2) or less (SP-HG2). If we interpret the practitioner’s
models as expansions around the Gaussian or the Homoscedastic Gamma distributions, the
results imply that expanding around the Gaussian density is restrictive and does not offer
sufficient flexibility to match the skewness and kurtosis implicit in the data. Moreover, when
we consider the sequence of models, we see that imposing restrictions such that skewness
is correctly measured and excess kurtosis constant does preserve most of the performance

improvement.

Another way to view these results is to consider the results of Bates (2005) and Alexander
and Nogueira (2005). Essentially, they show that for any contingent claim that is homogenous
of degree one, all partial derivatives with respect to the underlying can be computed by
taking partial derivatives of option prices with respect to strike prices. This implies that, if
the number of observed option prices is arbitrarily large, we can compute delta and gamma
exactly from non-parametric derivatives. In practice, however, some parametric model is
fitted to observed prices from which derivatives can be imputed. The hedging performances
of the P-BSM and the P-HG models imply that the latter offer a better fit of the true
option price curve across the strike continuum and, therefore, a better fit of the true option’s
delta and gamma. In other words, the relatively poor fit of skewness by Gaussian-based
expansions translates in inaccurate option sensitivity measures and larger hedging errors

relative to approximations based on the Gamma density.

The performance of the SP-HG2 model implies that the parametric measure of risk-
neutral skewness is relevant. This provides a measure of skewness that is easy to compute
and requires less data than a non-parametric measure. Moreover, together with the regression
results from Section VII, the importance of skewness for hedging and out-of-sample pricing
confirms the key link between the risk premium and volatility shift across moneyness and
skewness. Indeed, imposing the additional restriction that excess kurtosis is constant yields
the next to best out-of-sample and hedging performances. Interestingly, the estimate of s
is negative (-0.042). Then relaxing the link between kurtosis and skewness allows for more
asymmetry to be applied to the data than the benchmark HG model does. This adjustment
is significant: to keep kurtosis constant but with s equal to zero, skewness would have to be
reduced (closer to zero) by 0.21. Taken together, the results lead us to adopt the SP-HG2
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as our preferred model to measure the option-implied skewness.

VII Skewness And The Compensation For Risk

A Implications For The Volatility Spread

When the representative SDF can be approximated by the exponential-shift given in
Equation 4 we have a tight link between the price of risk, the volatility spread and skewness.

After some manipulation of Equation 7, we obtain

*(1) (i)
i i O  —0
I (Segi/Se) = i —wf) = —2—t—=—L-
Q

+ 0, (i)sf >

for an investment horizon ¢ and where rgi) is the risk-free rate for that horizon and w; is the
Jensen adjustment term.! In the following, we test this implication of the HG model and
its ability to capture the volatility spread and the equity premium. We perform regressions
of SP500 (log) excess returns on the ratio of the volatility spread to skewness. The key

predictions are that the constant should be zero and that the coefficient should be -2.
B Aggregating Data

We obtain estimates of risk-neutral volatility and skewness from option data. Estimates
of skewness for different maturities are noisy in weekly data. This is in part due to the
number of option prices available each week in each category. One simple solution is to
group price observations at the monthly level. This reduces the noise in the estimates of
volatility and skewness used in excess returns regressions. Another benefit of this approach
is that it ensures enough observations to estimate our model in each maturity group. This
allows us to draw the implied volatility and skewness surface in different maturity groups

and, as a byproduct, to obtain a term structure of skewness and volatility.

To group observations, we use settlement dates rather than calendar months. Since each
contract settles on the third Friday of a month, we group all observations intervening between
two successive settlement dates.?® All weekly observations occurring within such a sub-period

can be unambiguously attributed to one maturity group.?! Note that settlement dates follow

This term is a function of both skewness and volatility but the first term of its Taylor expansion is the
usual correction in the Gaussian case, %02.

20These subperiods have varying length depending on the (calendar) months they cover.

21Take any contract, on any observation date. This contract is assigned to the 1-month maturity group
if its settlement date occurs on the following third-Friday, to the 2-month group if it occurs on the next to

following third-Friday, etc.
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a regular pattern though time: contracts are available for 3 successive months and then for
the next 3 months in the March, June, September, December cycle. This leads to maturity
groups with 1, 2 or 3 months remaining to settlement and then between 3 and 6, between 6

and 9, and between 9 and 12 months remaining to settlement.??

(See Section III). Within each month, we have repeated observations of the same con-
tracts over a period of 4 (or 5) weeks.?® This implicitly assumes i.i.d. return innovations
throughout a month, which is consistent with the model and reasonable over this short time
span. It also implies that the maturity date of each contract is constant throughout each
month and, thus, that the skewness estimate pertains to a set of contracts that mature at
fixed maturities. Finally, we measure the historical volatility using the observed realized

volatility.

We estimate our preferred version of the model each month through minimization of
squared pricing errors.?* Figure 2 presents the time series of our volatility estimates (Panel (a))
and of our skewness estimates (Panel (b)). Skewness typically varies around -1 but dipped
close to -2.5 in the summer of 1998 and in the second half of 1999, and slightly below 1.5 in
the Fall of 1996 and the Spring of 2004.

C' Regression Results

Table III presents the results from regressions of excess returns at horizons of 1, 3, 6,
12, 24 and 36 months on the ratio of the volatility spread to skewness. ?®> The results are
striking. Point estimates for the slope coefficient are close to -2 as predicted by the model.
Moreover, at horizons of 3, 6, and 12 months, where we would expect the forward-looking
nature of the option-implied estimate to be the most relevant, estimates are -2.24, -2.04 and
-2.13, respectively. In fact, at any horizon, we cannot reject the null hypothesis that the
coefficient is equal to -2. Next, the constant is not significantly different from zero so that

the two most important implications of the model cannot be rejected empirically. Finally,

22Within a given month, and within a given maturity group, the same contract (i.e. same strike price)
is observed with successively shorter maturities. However it is priced consistently under the null of i.i.d.
returns innovations throughout the month.

23Some contracts are not observed each Wednesday within a month. New contracts become available to
participants as the index moves away from the range of available strike prices. Also, some contracts are not
available each week because they were excluded from the weekly sample due to liquidity concerns.

24Specifically, we estimate a restricted version of the practitioner’s HG model that allow for kurtosis but
maintain the identification of the risk-neutral volatility and skewness (See Section VI). As a robustness
check (not reported) we repeated the exercise using skewness estimated from the simple HG model presented
above. The results are not qualitatively different.

25Precisely, our measures of risk-neutral moments pertain only to the distribution of returns at a horizons
of 12 months or less. Nonetheless, if these moments exhibit persistence, their predictive power will extend
to longer horizons as is indeed the case
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the predictability of excess returns is low at the 1-month horizon (i.e. R? is 1.85%) but rises
steadily with the horizon, reaching 5.6%, 9.7% and 11.3% at horizons of 6, 12 and 36 months.

For comparison with results available in the existing literature, we also consider regres-
sions on the volatility spread which displays some predictive power at horizons of 9 and
12 months. However, coefficients are not significant at other horizons. Finally, we ask if
the volatility spread contains information beyond that revealed by the ratio of the volatility
spread and skewness. The results from the regressions are presented in Table III. Since
volatility and the ratio of the volatility spread to skewness are correlated, the coefficients
become unreliable, even changing signs. However, their combined predictive power does not
rise above that of the volatility to skewness ratio, further supporting the implications of the

model.
D Skewness And Delta-Hedged Gains

Volatility risk, as well the presence of skewness or excess kurtosis, induces a risk premium
in index option markets (see e.g. Bakshi and Kapadia (2003)). Holding a call option and
hedging its exposure to the underlying with a short position in the index consistently yields
losses. For reason of convenience, these results are typically based on explicit hedging strate-
gies derived from the BSM model (i.e. A;). These derivatives are also available in closed-form
in the case of the HG model but they also depend on the measured skewness. In fact, to
the extent that this risk premium is attributable not to the presence of volatility risk but to
presence of skewness and kurtosis, Delta-Hedged gains should be reduced substantially when
using the HG-based A;. This is relevant because the HG model provides explicit solution

for A; and can be easily implemented by practitioners.

This sections explores whether the skewness allowed in the simple HG model captures
part of Delta-Hedged gains. We perform the following simple exercise. First, purchase a call
option and then establish a short position in the index to hedge against the sensitivity to
the underlying. Then, hold the position for a week, close all positions and compute gains.

We assume that one can borrow and invest at the risk-free rate, r;. The gains are given by
1
41 = Ct+1 — Ct — At(St—i-l — St) — ’T‘t(Ct — AS})Q (17)

where the hedge ratio, A, is computed from the BSM or from the HG model, respectively.

At each date, we compute the gain for each available option whenever that same option
is observed in the following week. We average gains within each maturity and moneyness
category and Table IX provides results from the BSM model (Panel (a)) and from the HG

model (Panel (a)). Consistent with previous literature, we see average Delta-Hedged gains
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from the BSM model are typically negative. Gains are particularly low for out-of-the-money
short maturity options but increase with moneyness and maturity. In fact, gains are close
to zero for in-the-money options. Using A based on the HG model reduces Delta-Hedged
losses substantially. This shows that skewness captures important information about the
compensation for risk offered to option sellers. Results using HG-based A; suggests a much
lower risk premium (i.e. lower losses from holding calls) for out-of-the-money option for each
maturity category while gains are similar to the results from the BSM case for in-the-money
options. The results are consistent with the predictions of the model. Recall Figure 8d,
which gives the impact of skewness on A; across moneyness for different values of skewness
relative to the A; computed from the BSM model. Clearly, the impact of a negative skewness

is largest for out-of-the-money options but small or zero for in-the-money options.2°

E  Discussion

We can interpret the results in the broader context of a general equilibrium model. There,
the price of risk is determined by preference parameters. In particular, in an economy with
power utility, v corresponds to the risk-aversion parameter (see e.g. Bakshi et al. (2003))
which can be estimated given estimates of the risk premium, p — r, and return volatility, o,
obtained from observed returns data. Equation 6, which is repeated here,

p—r 1lp—r2+o

1
V+§N 02 +§ o3 @

shows that ignoring skewness (the last term) leads to upward bias in the estimate of the
price of risk and, hence, of risk aversion. Note that the role of skewness was first highlighted
by Kraus and Litzenberger (1976). Intuitively, when agents are risk-averse, and the risk
premium is positive, a more negative value of skewness corresponds to an increase in the
quantity of risk: the probability of lower returns increases. Then accounting for skewness
reduces the price of risk required to fit the observed equity premium and, ultimately, leads

to lower estimates of risk aversion in the economy.

The impact of skewness is economically significant. Since 1980, the sample mean and
volatility of one-year returns is 14.72% and 6.13%, respectively, and the first term of Equa-
tion 6 is equal to 20.5. In other words, if risk is summarized by the volatility of market
returns, then the equity premium appears too large and leads to excessively high estimates

of the coefficient of risk aversion. However, the coefficient of skewness, «, in the last term

26Note that our results contrast with Bakshi and Kapadia (2003). They consider regressions of BSM
Delta-Hedged gains on skewness (and kurtosis) and find that it plays a small roll relative to volatility. These
regression pooled Delta-Hedged gains across moneyness and are limited to near-the-money options. Looking
at Figure 8d, we expect that they produce low coefficients.
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is 12.88. For a value of skewness, say, of -1, the estimate of the price of risk is 7.63, less
than half than if we ignore the impact of skewness. Moreover, the estimates of skewness we
obtain below are often lower than -1. (See also Harvey and Siddique (2000) for evidence that

skewness is priced.)

The results presented here show that this important linkage between skewness and the
equity premium also hold when using option-based measures of skewness and, furthermore,
that the importance of skewness extends to the volatility spread. Note that we provide evi-
dence from two different sources. We first show that conditioning on skewness improves the
predictability of future stock returns when using the volatility spread. Periods where returns
are more skewed also have a higher equity premium and higher volatility spreads. Next we
show that conditioning the A; of an option on the current estimate of skewness improves
delta-hedged gains on out-of-the-money options. These options offer more compensation for
risk in periods where returns are more skewed. Overall, the evidence suggests that an un-
derstanding of the volatility spread and of the equity premium demands an understanding
of the determinants of skewness. Moreover, it shows that properly conditioning on implied
skewness is key to deciphering the information content of options prices for future returns.
In fact, reversing the relationship, and interpreting the volatility spread as the returns on a

specific portfolio of options,

VVar? n (Sesi/S0) — \/Varf [ (S4/50)] =
L (BE 0 (Susa/S0) = B2 (5114/90)])
2 Sk:eth [In (S1i/St)]

(EF 0 (Susi/ 0] = EE[n (S144/90))

we see that a version of the CAPM conditional on skewness “explains” the returns on the
volatility spread portfolio. This offers an answer to the question posed in Carr and Wu

(2009) which asks what factor may explain the volatility spread.

Our results complement existing results (e.g. Bakshi and Kapadia (2003), Bollerslev et al.
(2008)) where the volatility spread is linked to variance risk being priced. In our model, the
asymmetry in returns shifts the risk premium and the risk-neutral volatility. This induces the
link between the volatility spread and the equity premium. In contrast, Polimenis (2006)
and Bakshi and Madan (2006) link the volatility spread to higher order moments of the
historical distribution.?” Our results support the relevance of this channel and suggest that

an understanding of the volatility spread, and its relationship with compensation for risk,

2TBakshi and Madan (2006) find that measure of historical skewness plays a relatively small role in the
determination of volatility spread. They did not consider measures of skewness based on options prices.
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demands an understanding of skewness. In particular, this new stylized fact should help
discriminate across competing theories of the observed volatility spread. Our results also
complement the results of Bakshi and Kapadia (2003). They test whether Delta-Hedged
gains for near-the-money options are negative as a test of compensation for volatility risk
in option prices. On the other hand, we show the asymmetric impact of skewness on Delta-
Hedged gains of options that are away from the money are attributable to the skewness of
returns. In particular, this asymmetry cannot be rationalized in a Stochastic volatility model

with leverage but with no jumps (see Bakshi and Kapadia (2003)).

VIII Term Structure Of Moments

Section IV presented the trade-off between volatility and skewness when fitting option data.
One important observation is that a different value of skewness was required to restore
the symmetry of the IV curve for different maturities. This suggests that the risk-neutral
distribution converges at slower rate than implied by the i.i.d. assumption. While the time-
dependance of returns is well documented in the literature, the framework presented here
allows for a transparent presentation of deviations from i.i.d. returns. We use the fact that
skewness should decay toward zero with the square root of horizon, \/(H ). If this is verified
in the data, estimates of skewness multiplied by the square root of the horizon should not
vary with the maturity of an options. Otherwise, the term structure of implied skewness
reflects a degree of dependence implicit in option prices. Similarly, the excess kurtosis of
returns should decay with H and annualized estimates of volatility should be flat across
horizons. A key question is on what moment does the time dependence of returns have the

greater impact.

An important advantage of our parametric approach is that we can obtain estimates of
risk-neutral moments at much longer horizons than is usually the case with non-parametric
methods. We estimate the term structure of volatility, skewness and kurtosis using the SP-
HG2 model discussed above. We minimize pricing errors separately for each maturity (1, 2
and 3 months, and then from 4 to 6 and from 7 to 9 months. See Section III). Figure 9

presents the results.

Figure 9a presents the average (annualized) implied volatility for each maturity. The
time-series average rises from close to 21.4% for the next settlement month to 21.8% at a
maturity of 3 months. Thereafter, implied volatility remains more or less flat. Figure (b)
presents results for (negative) the implied skewness. In contrast with implied volatility, the
implied asymmetry rises sharply for all maturities we consider. Figure 9c shows the term

structure of (negative) the implied excess kurtosis. Perhaps surprisingly, excess kurtosis rel-
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ative to the HG distribution decreases with maturity. Overall, the term structure evidence
indicates that the distribution of expected returns violates the i.i.d. assumptions. However,
the impact of dependence appears to have a much greater impact on implied skewness than
on other moments. In contrast, measures of implied volatilities flatten out beyond a matu-
rity of 3 months while measures of implied excess kurtosis decrease with maturity. To our
knowledge, this differential impact of time-dependence on skewness and kurtosis has never

been documented.

IX Conclusion

We consider a simple extension of the BSM option pricing model. The Homoscedastic
Gamma model allows for arbitrary skewness in the distribution of returns and delivers closed-
form option pricing formula at any maturity. We provide a natural change of measure under

which returns are HG under the historical and the risk-neutral probability measures.

We first introduce the implied volatility and skewness surface, which we study empirically.
This is a new tool that provide a transparent interpretation of variations in the shape and
level of the IV curve in terms of skewness. Next, we show that practitioner’s variants of the
HG models improves upon practitioner’s version of the BSM model. This can be interpreted
as evidence that expansions around the Gaussian density are not sufficiently flexible to
capture the skewness implicit in option prices. More importantly, our model makes explicit
the relationship between skewness, the volatility spread, the equity premium and Delta-
Hedged gains. The evidence we present support the key role of skewness for option prices
and risk premium. Finally, we document the term structure of volatility, skewness, and
kurtosis out to an horizon of 9 months. We find that dependence in returns have a larger

impact on skewness than kurtosis, highlighting, again, the importance of skewness.

At a first level, this paper provides simple but powerful tools allowing practitioners to
monitor and assess the impact of skewness variations on option prices and risk sensitivities.
Moreover, the evidence presented here implies that the properties of stock returns volatility
and skewness must be considered jointly. While many models have similar implications for
the volatility spread, they typically differ in their implications for the skewness implicit in

option prices.
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X Appendix

A Proposition 1
Our candidate SDF is, for given v,

My =exp(—v(A)e, + ¥ (v (A))),
where V¥ ig the log-cumulant function of ¢,

W (1) = 2u ah((AA))_a(Z)Q In 1+%ua(A) e

Following CEFJ, this SDF defines an Equivalent Martingale Measure [EMM] if and only if
U (A)=1) =¥ (A) =¥ (=1)+(u—r)A=0,

which has the following unique solution for v (A),

where

(o) g (R a4 YR,

Proposition 2 of CEFJ establishes sufficient conditions on ¥ for the solution to be unique.

B Limit of Risk-Neutral Volatility

Define
o= (u—r)
5(8) = a(a) Y2
o*(A) = Vh* (D) VA,

and note that the drift correction term can be written as
NI - A _ ot (8) -0,
a(A) B(A)
We first study the limit of the numerator as skewness tends to zero. Using the definitions above we have

(see Proposition 2)
ONSCIE

ﬁ —
B(A)g(B(A)

(18)

(19)

~—

where, with a slight abuse of notation,
9(B(A)) = exp(~T1oB(A)* + B(A)o), (20)

which leads to an indeterminacy when skewness tends to zero. We use the first order expansion of the
exponential function, exp(z) = 14 = + 26(x) where 6(x) tends to zero when x tends to zero. Substituting
in Equation 19 leads to, after some simplification,

o* (A) = —IIpB (A)+ 0+ 0 (5 (A))
1 -8 (A 4+ B8(A) o+ B(A)6(8(A))

b
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and taking the limit shows that o* (A) — o when 8 (A) — 0.

Note then that the limit of 18 leads to an indeterminacy. We will again apply a Taylor expansion but,
first, we compute the first order derivative of (19) with respect to 5(A) using Equation (20) to compute the
derivative of g (3(A)) which leads to

do™ (B(A)) _ 1=9g(B(A)) + B(A) (0 - 2Te5(A))
dp(A) B(A)?g (B(A)) ’

where again we face an indeterminacy. We use a second-order expansion of g(5(A))

9(5(2)) = 9(0) + B (8)¢'(0) + 3" ()5 (A + 5 (A)*0(5 (),

where 0(8(A)) tends to zero when S(A) tends to zero. Substituting these results in a first-order expansion

for o*(B(A)), do* (B(A))

o" (B(A)) = o7 (0) + TN (0) B(A) + B(A)0 (B(A))

a*(A)—a__ cﬁ
W— (H0+ >+9(ﬂ(A))7

2
which, in the limit, delivers the desired result. Note that we then have

* _ 02
@(Am _ ( >A+A0(ﬂ(A))~

leads to

BA+2

2

and, finally, that if we substitute the second-order expansion for g(A) in the solution for v, we get

u—T—&-‘L;_u—r 1

V(A) - 0_2 0_2 + 57
C' Taylor Expansion of the Price of Risk
We want to show that,

—r 1 et

l/(ﬁ)%M027a+§—|— 03 126

where
1 93
vB) = gt g(B)—1

9(8) = exp(—(u—r)F*+ o).
Recall that v (0) = (1 —r)/o? 4+ % and note that
1 g9 ()
B2o (g(8)—1)*
g B) = (20u—r)B+0)g(B),

We evaluate the limit of this derivative as 8 — 0 using, as above, the second-order expansion of g(3). After
tedious but straightforward computations, the result is

4 4 4
(b= +F =2u-r)0*+ % —(u—r)o* +2(u—1)0" + (u—r)0* = %

v (0) = ;

g
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D  Proposition 2

From CEFJ, the logarithm risk-neutral of the risk-neutral Moment Generating Function is

U9 (u) = —ulV (v(A)+ T (v (A)+u)—T(r(A))
NS ! *
= 2u o (D) w(A) In 1+2ua(A) h* (A)],
implying that
SN :*((AA))EHA +v(A)/Rh(A).

The HG model can then be written as

In (Si4a/St) =roA — " (A) +/h* (A)E:+A7

where
Y (A) = W (~1) = -2 S(A()A) _a(4A)2 In 1—%a(A) ZSIE
and with 2g (A) - 1)
* _ 9 —
A = ) ed)

Substituting back in the equation for returns under the risk-neutral measure, and simplifying, yields the
results.

E  Greeks

For notational simplicity we introduce a = H/B(A)2. We begin with the sensitivity to changes in the
underlying stock price. The HG option price is homogenous of degree one in stock price and strike. Then
the standard result holds and the option delta is simply

0C

aist == O])t, (21)

which depends on skewness. Next, the sensitivity of the option’s delta with respect to the stock price is

2 7(d2+7’fH) a—1
=" 2 (22
05¢ |Blo*T(a) S}

which also depends on skewness and moneyness. The sensitivity of option prices to changes in the underlying
risk-neutral volatility is
9C;,  |BlorelmrK e~d2dg

do;  o*(1—Bo*) T(a)’ (23)
and, finally, the sensitivity of option prices to changes in the skewness of returns is given by
%%t - —%“ (In(ds) — U(a)) Cy — Ke="H) P(a, dy) In(1 — fo) (24)
+ ?F(a)ngt(l — Bo) s Fy(a,a;a+1,a+ 1; —dy)
- ?F(a)dgKeg_er)FQ (a,a;a+ 1,0+ 1;—ds)
L gelerm 0 e™ds

1—80* T(a)’

where B
VU (a,z) = P(a,z)In(z) = T'(a) 2%, F,(a,a;a+ 1,a + 1; —z),

and where , F, () is the regularized hypergeometric function.
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F Proposition 3

A no-arbitrage price of a European call option with strike price K and maturity 7' can be obtained from the
computation of the discounted expectation of the terminal payoff under the risk-neutral measure. That is,

Cy(K,M) = E®[max(S; 7 — K,0)]
Ct = exp(—rT)StEQ [exp (Rt,M) 1[Rt,M>1H(K/St)ﬂ — eXp (—ToT) KPQ [Rt,JM > hl(K/Stﬂ .

We can compute P?[R; > In(K/S;)] from the distribution function of a gamma variable. Note first that

) o (/S -~ (A MA VAN
VAM M VAMas* (A) B(A)

2/M [, 2vVM\ AM
o (A (Q,M + a(A)) =Yim ~OT (W» 1> ,

based on the characterization of the standardized Gamma distribution given in Equation 2. If o (A) > 0,

b

PC[R;n > In(K/S;)] = P2

where we define

T . T In(K/S¢)—p* (AT
F(BQ(A)’ﬁ2(A)+ B(A)o (A) )

T b
r (Zam))

where I'(a, r) is the upper incomplete gamma function?® and if « (A) < 0,

P@[Rin > In(K/S;)] ==

( 4 ln(K/St)—,u*T>
BAY B(A)2 B(A)o*(A)

F(ﬁ(A)2)
T In(K/S¢)—p*T
F( AT BT T BAe A )

r (B(A)z)

[Rt M > ln(K/St)]

=1

Similarly,

E9 [exp (Ry,m) LRy v >In(K/S0)])
o* (A) MA
B(A)

_ eXp< (A) MA — ﬁnyMﬂ

) E° [exp (" (A) B(A) yiar) 1[ 5(A)

where we use

In(K/Sy) — p* (A)MA  VAM
VAMas* (A) B(A)”

Then, if @ (A) > 0, and using that Yr ar has a standard gamma distribution with parameter %AA)Q, we have

KR =

EX |:eXp (0'* (A)B(A) ?J;M) 1 {yf M \/7'{} :|

B(A)
(25 5) 707 !
° " ZiM «
= / exp (_zt,M) t IVIAA dZt,M
e QI8 e (-0 (8)5(a) " T (2

MA . MA In(K/S:)—p* (A)AM %
F( (A)z’(ﬁm)"’ A )(1—0 (A)ﬁ(A)))

MA
B(A)2

(#:) 1-0" (8)B(A))

28The upper incomplete gamma function is defined as I'(a,z) = [° t*~te~*dt while the lower incomplete
gamma function is defined as y(a,z) = [ t*~'e~'dt. Note that I'(a) = I'(a, 0) while y(a) = y(a, c0).
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and, using the change of variables (1 — 0" (A) 8(A)) y; or = 2{ 5, it follows that

EQ [eXp (RLM) ]‘[Rt,]\/1>1n(K/St)ﬂ
T

— exp <(u ay- = (A)> T) P (5 (aar + ) (- 0" (4)5(8)) |
B(A) F(ﬁif)(l_a*(A)ﬂ(A))

T
B(a)2

If, however, a (A) < 0 then

E€ {exp (0" (A) B (A) yiar) 1[ () yf,nﬁ"ﬂ

VAM
MA [ MA | In(K/Si)—u" (A)AM .
g (ﬁ(m?’ (B(A)2 + B ) 1-0o (AW(A)))

MA )
B(A)2

P (F40) (1 -0 (2)B(A)
and then
E9 [exp (Re,m) LR, ay>In(k/50)]
T .(_T In(K/Sy)—p* (A)T .
% v T T + o (1—0*(A)B(A))
= exp <(M* a) -2 (A)> T) (ﬁ(A) (ﬁ(A) B(Ajor (A) ) )

A
B(A) F(Wﬁﬁ) (1-0*(A)B(A))

T
B(A)2

G Proposition 4
Suppose that the underlying stock price evolution under the risk-neutral measure is given by
Rr=(r—0)T +0oVTy

where ¢ is a risk-adjustment factor, y is a random number with mean zero, variance 1, skewness, and

Sle

kurtosis, Ag. Suppose also that the probability density of y is described by the following Edgeworth series
expansion around the standardized gamma distribution:

2
n A — - dg (y)
4 dyt

fw=9W)

where ¢(y) is the standardized gamma density function given by

\/Tza—le—z

BT@ P>V

9(y) =

and where z = %y + a. Imposing that gross stock returns are a martingale under the risk-neutral measure,

Elexp (Br)] = Eflexp ((r = )T +oVTy)]

= exp((r—9) T)/exp (cr\/fy)

)\ _@dzl
gly) + 2T g(y)] Y,

4! dy?*

leads to the required risk-adjustment,

exp (—UBT —aln(1- ﬁo)) + /\2;!67@2 /exp <U\/Ty) g (y) dy} .

1
6= —1In i

T
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The price of a European call option is

ey = e_TT/j* (Soexp ((r—é)T—i—aﬁy) —K) fy)dy

where

In (So/K) + (r =) T

dy =
2 oVT

We have

ch=e"T lSo exp ((r —0)T) /Oo exp (0ﬁy> fy)dy— K B f W) dy] -
—ds

For the first integral, we have

/Z exp (o\/Ty) fy)dy = /z exp (o\/Ty) g(y)dy + ,.;/Z exp (aﬁy> (#Cigyiwdy

and for 3 < 0, say, and d} = ds (1 — 0/3) we have

e—aﬁa

/_j* exp (o\/fy) g(y)dy = mp(%dﬁ

while

( 1_0.) a—4 7( 1_0) a—3
P(a—2,d; P(a—1,dy
B e

P(a,di)
(1-op)®

P(a—4,d}) 4 P(a—3,d})
+

Next, for the second integral above,

oo [e%s} [es} d4
d*f(y)dy=/ g(y)dy+m/_d; jy(j/)dy

_ds

with
oo a—dgg Za—le—z _
dy = ——dz= P (a,d
/—d;g(y) Y /0 T (a) Z (a‘ 2)
oo d4g(y)d _ (12 P(at4,g2)—4p(at3,g2)+ B
gyt 6P (a—2,d) — AP (a — 1,d3) + P (a, do)

H Identifying Restriction on the P-HG

The equality of prices from the true model and the P-HG for at-the-money options implies that

P(a,d;}) — P(a,d3) = P (a,d1) — (1+ T%0") P (a,dy)
2O’
+ nTﬁ—g [—1" (ds) + o BN (d2) — 0*B*h(da)]

while the equality of the first derivative of prices implies

oo dsBh(ds)

P(a,d3) + VT (1= Boor)

= (1+T%0"k) P (a,ds)

+ ra® [W" (d2) + 0®BPh(da)]

37



and, finally, the equality of the second derivatives implies

h(ds) |, (2a—di —d3)Borom d3 30077 2d53%07) e | _
oor (1 - Boor)av/T (1= Boor)® 6T (1= Poor) 5T
2
(14720 8) "By BT () 1 07500 ).

Then, linearizing the left sides of the equations around o9 = o, 713 = 0 and 2 = 0, respectively, and the
right side around x = 0 leads to

g0 —0 3 .3P(a,d2) (a—1)(a—2) (a—1)2+08) 1+0B8+023
— = a(loﬂ)(aﬂh(d2)d2+ dg — d% + & >/<;
 oVT(a—d)og—o  5VTa>(1—0af) [BP0P(a,ds) . o o §h® (do)
=TT 5o, s T s { Wy T2 +ﬂah(d2)]“
. T h/<d2) (a—dl) o0 — O
2= _2ﬁ202d2( h (d2) _1+05> -
VT (2a — dy — do) B (dy) \ o (1 —oB)5%T?
- 2,60 n (‘” h (d2)> N
where
_ —aln(1-o0pB)
2 = o3
d1 = d2 (170}8)
T
“ T B
N, — 682
K = 72 4' T .
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Table II: Summary statistics for strike price and maturity categories. SP 500 call options
January 1996 - December 2004.

(a) Summary statistics by moneyness

Moneyness
<0.95 <0.975 <1 <1.025 >1.025 All
Number of Contracts 3343 2418 3859 3077 3809 16506
Average Call Price 28.24 31.80 37.22 47.05 78.85 46.05
Average IV 19.43 19.23 19.36 20.13 22.66 20.26

(b) Summary statistics by maturities

Contract Month

1 2 3 4-6 7-9 10-12 All
Number of Contracts 4303 4016 2377 2822 1726 1167 16506
Average Call Price 36.60 39.53 42.91 51.53 61.95 72.74 46.05
Average TV 20.47 20.24 20.37 20.19 20.15 20.24 20.26

(¢) Summary statistics by moneyness and maturities. Number of contracts in brackets.

Moneyness
Months <0.95 0.95 to 0.975 0.975to 1 1 to 1.025 >1.025
1 [96] [398] [1104] [1172] [1533]
21.39 18.65 18.63 19.55 22.92
2 [354] [668] [1113] [848] [1033]
19.80 18.66 19.13 20.08 22.75
3 [461] [445] [647] [406] [418]
19.75 19.24 19.78 20.94 22.61
4-6 [973] [481] [504] [371] [493]
19.27 19.48 20.00 20.88 22.39
7-9 [805] [262] [280] [167] [212]
19.18 20.35 20.33 21.26 22.46
10-12 [639] [157] [194] [89] [88]
19.44 20.72 20.99 21.48 22.30
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Table III: Predictability of Excess Returns by Implied Skewness.

The table reports the results of n-period regressions of returns on the SP500 index in excess of a yield of
maturity of n months:

I 1V,
g Z <7)ILI,t+j - yj(f7t)+j + 2t> =an+ b;IrPREDt + En,t4+n-
j=1

The regressor PRED is a combination of IV-RV and (IV-RV)/IS, where IV and IS are annualized implied
volatility and skewness from all option contracts, and RV is the annualized realized volatility. Reported in
square brackets and in brackets are respective robust t-statistics for the null that the coefficient is equal to
zero, and for the null that the coefficient is equal to —2. January 1996 to December 2004.

1 3 6 12 24 36

Constant -22.19 -5.43 -3.50 -7.14 -6.93 -18.96
[-0.65] [-0.20] [-0.12] [-0.24] [-0.24] [-0.70]

(IV—RV)/IS -3.28 -2.24 -2.04 -2.13 -1.58 -1.64
[-2.66] [-2.52] [-2.69] [-3.85] [-2.38] [-2.66]

(-1.04) (-0.27) (-0.05) (-0.23) (0.64) (0.57)

Adj. R? 1.85 3.11 5.59 9.72 8.06 11.28
Constant 0.10 2.86 -8.13 -10.68 -0.63 2.31
[0.00] [0.08] [-0.26] [-0.33] [-0.02] [0.07]

IV-RV 7.33 6.38 8.11 8.28 4.37 2.12
[1.76] [1.65] [3.01] [3.40] [1.51] [0.75]

Adj. R? -0.03 1.18 5.83 9.72 3.52 -0.11
Constant -11.78 -3.23 -10.59 -13.93 -5.15 -7.55
[-0.33] [-0.10] [-0.34] [-0.44] [-0.16] [-0.25]

IV-RV -7.46 -1.53 4.83 4.63 -1.15 -5.29
[-0.93] [-0.25] [1.18] [1.24]  [027]  [-1.71]

(IV—RV)/IS -4.79 -2.55 -1.06 -1.19 -1.81 -2.59

[-1.98] [-1.66] [-0.86] [1.35]  [1.98]  [3.31]

Adj. R? 1.27 2.21 5.55 10.05 7.05 14.06
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Figure 1: Number of call option contracts at each date

(a) Total number of contracts.
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(b) Proportion of contracts in each moneyness category.
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Figure 2: Time series of implied volatility and implied skewness from the smoothed version
of the SP-HG2 model. This is a practitioner’s version of the Homoscedastic Gamma model
where the IV curve is restricted to depends only on the (constant) excess kurtosis.
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Figure 3: Implied Volatility curves across values of skewness in level (Panel (a)) and in
percentage deviation relative to the benchmark (i.e. zero skewness) BSM case (Panel (b)) ,
The grid covers 41 equidistant values of skewness and moneyness is defined as % to

correct for maturity differences.
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Figure 4: Implied volatility and skewness surfaces for different maturity categories where
moneyness is defined as In(S/K)(—r7). Maturity groups are defined using settlement dates.
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Figure 5: Deviations of implied volatility and skewness surfaces from the BSM IV values for
different maturity categories. Moneyness is defined as In(S/K)(—r7) and maturity groups
are defined using settlement dates.
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Figure 6: Implied skewness curve for different values of volatility, in percentage deviation
from BSM 1V values, for different maturity groups. Moneyness is defined as In(S/K)(—r7)
and maturity groups are defined using settlement dates.
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Figure 7: Time-series average of estimates of ©; = (oy,714,72¢) from the P-HG3 (unre-
stricted) model but for different values of skewness. The parameters govern the IV curve:

it = 0r04(1 4+ 112& + 72487
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Figure 9: Term Structure of implied volatility, (minus) the implied skewness and (minus)
the implied excess kurtosis from the SP-HG2 model.
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