
A Stochastic Volatility Model with Conditional Skewness∗

Bruno Feunou† Roméo Tédongap‡
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Abstract
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isting affine generalized autoregressive conditional heteroskedasticity (GARCH), and stochastic
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SE-113 83 Stockholm, Sweden. Email: Romeo.Tedongap@hhs.se.



1 Introduction

The option-pricing literature holds that generalized autoregressive conditional heteroskedasticity

(GARCH) and stochastic volatility (SV) with jumps (SVJ) models significantly outperform the

Black-Scholes model. However, SV models have traditionally been examined in continuous time and

the literature has paid less attention to discrete-time SV option valuation models. This is due to the

limitations of existing discrete-time SV models in capturing the characteristics of asset returns that

are essential to improve their fit of option data. In particular, these models commonly assume that

the conditional distribution of returns is symmetric, violate the positivity of the volatility process,

do not allow for leverage effects or do not have a closed-form option price formula. This paper

contributes to the literature by examining the implications of allowing conditional asymmetries in

discrete-time SV models while overcoming these limitations.

The paper proposes and tests a parsimonious discrete-time affine model with stochastic volatility

and conditional skewness. Our focus on the affine class of financial time-series volatility models is

motivated by their tractability in empirical applications. In option pricing, for example, European

options admit closed-form prices. To the best of our knowledge, there is no discrete-time SV model

delivering a closed-form option price that has been empirically tested using option data, in contrast

to tests performed in several GARCH and continuous-time SV models. Heston and Nandi (2000)

and Christoffersen et al. (2006) describe examples of one-factor GARCH models that belong to the

discrete-time affine class, and feature the conditional leverage effect (both papers) and conditional

skewness (only the latter paper) in single-period returns. Christoffersen et al. (2008) provide a

two-factor generalization of Heston and Nandi’s (2000) model to account for long- and short-run

volatility components. The model features only the leverage effect but not conditional skewness in

single-period returns. In the continuous time setting, Bates (2006), among others, examines the

empirical performance of an affine SVJ model using index returns and option data. We compare

the performance of the new model to these benchmark GARCH and SVJ models along several

dimensions.

As pointed out by Christoffersen et al. (2006), conditionally nonsymmetric return innovations

are critically important, since in option pricing, for example, heteroskedasticity and the leverage

effect alone do not suffice to explain the option smirk. However, skewness in their inverse Gaussian
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GARCH model is still deterministically related to volatility and both undergo the same return

shocks, while our proposed model features stochastic volatility. Existing GARCH and SV models

also characterize the relation between returns and volatility only through their contemporaneous

covariance (the so-called leverage effect). In contrast, our modeling approach characterizes the

entire distribution of returns conditional upon the volatility factors. We refer to the asymmetry of

that distribution as contemporaneous asymmetry, which adds up to the leverage effect to determine

conditional skewness.

We show that, in general affine models, all unconditional moments of observable returns can be

derived analytically. We develop and implement an algorithm for computing these unconditional

moments in a general discrete-time affine model that nests our proposed model and all existing

affine GARCH models. Jiang and Knight (2002) provide similar results in an alternative way for

continuous-time affine processes. They derive the unconditional joint characteristic function of the

diffusion vector process in closed form. In discrete time, this can be done only through calculation

of unconditional moments, and the issue has not been addressed so far in the literature. Analytical

formulas help in assessing the direct impact of model parameters on critical unconditional moments.

In particular, this can be useful for calibration exercises where model parameters are estimated to

directly match relevant sample moments from the data.

Armed with these unconditional moments, we propose a generalized method of moments (GMM)-

based estimation of affine GARCH and SV models based on exact moment conditions. Interestingly,

the sample variance-covariance matrix of the vector of moments is nonparametric, thus allowing

for efficient GMM in one step. This approach is faster and computationally more efficient than

alternative estimation methods (see Jacquier et al. 1994; Andersen et al. 1999; Danielsson 1994).

Moreover, the minimum distance between model-implied and actual sample return moments ap-

pears as a natural metric for comparing different model fits.

Applying this GMM procedure to fit the historical dynamics of observed returns from January

1962 to December 2010, we find that the SVS model characterizes S&P500 returns well. In addition

to the sample mean, variance, skewness and kurtosis of returns, the models are estimated to match

the sample autocorrelations of squared returns up to a six-month lag, and the correlations between

returns and future squared returns up to a two-month lag. The persistence and the size of these

correlations at longer lags cannot be matched by single-factor models. We find that the two-factor

2



models provide the best fit of these moments and, among them, the two-factor SVS model does

better than the two-factor GARCH model.

Our results point out the benefit of allowing for conditional skewness in returns. Our one-factor

SVS model with contemporaneous normality (i.e when current asset returns are gaussian conditional

on current factors and past information), which has both conditional skewness and leverage effect,

fits better than the GARCH model of Heston and Nandi (2000), which has conditional normality

and leverage effect, although both models share the same number of parameters. Our results also

show that the SVS model with contemporaneous normality is more parsimonious than the inverse

Gaussian GARCH model of Christoffersen et al. (2006), which has one more parameter and nests

the GARCH model of Heston and Nandi (2000). In fact, the SVS model with contemporaneous

normality and the inverse Gaussian GARCH model have an equal fit of the historical dynamics,

which is dominated by the SVS model with contemporaneous asymmetry. Interestingly, we find

that the SVJ model, despite a significantly higher number of parameters, is outperformed by the

one-factor SVS competitor. However, their overall fits of option data are comparable.

Fitting the risk-neutral dynamics using S&P500 option data, we find that explicitly allowing

for contemporaneous asymmetry in the one-factor SVS model leads to substantial gains in option

pricing. We compare models using the option implied-volatility root-mean-square error (IVRMSE).

The one-factor SVS model with contemporaneous asymmetry outperforms the two benchmark one-

factor GARCH models in the overall fit of option data and across all option categories as well. The

IVRMSE of the SVS model is about 23.26% and 19.85% below that of the GARCH models. The

two-factor models show the best fit of option data overall and across all categories, and they have

a comparable fit overall. The two-factor SVS model has an overall IVRMSE of 2.98%, compared

to 3.00% for the two-factor GARCH model.

The rest of the paper is organized as follows. Section 2 discusses existing discrete-time affine

GARCH and SV models and their limitations. Section 3 introduces our discrete-time SVS model

and discusses the new features relative to existing models. Section 4 estimates various SVS, GARCH

and SVJ models on S&P500 index daily returns and provides comparisons and diagnostics. Section

5 estimates SVS models, together with competitive GARCH and SVJ models, using S&P500 index

daily option data, and provides comparisons and diagnostics. Section 6 concludes. An external

appendix containing additional materials and proofs is available from the authors’ webpages.
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2 Discrete-Time Affine Models: An Overview

A discrete-time affine latent-factor model of returns with time-varying conditional moments may

be characterized by its conditional log moment-generating function:

Ψt (x, y; θ) = lnEt

[
exp

(
xrt+1 + y>lt+1

)]
= A (x, y; θ) +B (x, y; θ)> lt, (1)

where Et [·] ≡ E [· | It] denotes the expectation conditional on a well-specified information set It,

rt is the observable returns, lt = (l1t, .., lKt)
> is the vector of latent factors and θ is the vector of

parameters. Note that the conditional moment-generating function is exponentially linear in the

latent variable lt only. Bates (2006) refers to such a process as semi-affine. All the models considered

in this article belong to the semi-affine class. In what follows, the parameter θ is withdrawn from

functions A and B for expositional purposes. In this section, we discuss discrete-time affine GARCH

and SV models and their limitations, which we want to overcome by introducing a new discrete-time

affine SV model featuring conditional skewness.

The following SV models are discrete-time semi-affine univariate latent-factor models of returns

considered in several empirical studies. The dynamics of returns is given by

rt+1 = µr − λhµh + λhht +
√
htut+1, (2)

where the volatility process satisfies one of the following:

ht+1 = (1− φh)µh − αh +
(
φh − αhβ2

h

)
ht + αh

(
εt+1 − βh

√
ht

)2
, (3)

ht+1 = (1− φh)µh + φhht + σhεt+1, (4)

ht+1 = (1− φh)µh + φhht + σh
√
htεt+1, (5)

and where ut+1 and εt+1 are two i.i.d. standard normal shocks. The parameter vector θ is

(µr, λh, µh, φh, αh, βh, ρrh)> with volatility dynamics (3), whereas it is (µr, λh, µh, φh, σh)> with au-

toregressive Gaussian volatility (4) and finally (µr, λh, µh, φh, σh, ρrh)> with square-root volatility

(5), where ρrh denotes the conditional correlation between the shocks ut+1 and εt+1. The special

case ρrh = 1 in the volatility dynamics (3) corresponds to Heston and Nandi’s (2000) GARCH
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model, which henceforth we refer to as HN.

Note that volatility processes (4) and (5) are not well defined, since ht can take negative values.

This can also arise with process (3) unless the parameters satisfy several constraints. In simulations,

for example, one should be careful when using a reflecting barrier at a small positive number to

ensure the positivity of simulated volatility samples. Besides, if the volatility shock εt+1 in (4)

is allowed to be correlated to the return shock ut+1 in (2), then the model represented by the

equations (2) and (4) loses its affine property. Also notice that the conditional skewness of returns

in these SV models is zero. To the contrary, asymmetric conditional distributions of returns have

been considered in the affine GARCH literature which we also discuss in this article.

Christoffersen et al. (2006) propose an affine GARCH model that allows conditional skewness

in returns, specified by

rt+1 = γh + νhht + ηhyt+1, (6)

ht+1 = wh + bhht + chyt+1 + ah
h2
t

yt+1
, (7)

where, given the available information at time t, yt+1 has an inverse Gaussian distribution with the

degree-of-freedom parameter ht
/
η2
h . Alternatively, yt+1 may be written as

yt+1 =
ht
η2
h

+

√
ht
ηh

zt+1, (8)

where zt+1 follows a standardized inverse Gaussian distribution with parameter st = 3ηh/
√
ht. The

standardized inverse Gaussian distribution is introduced in Section 3.1.1. Interestingly, Christof-

fersen et al. (2006) provide a reparameterization of their model so that HN appears to be a limit

as ηh approaches zero:

ah =
αh
η4
h

, bh = φh −
αh
η2
h

− αh − 2αhηhβh
η2
h

, ch = αh − 2αhηhβh,

wh = (1− φh)µh − αh, γh = µr − λhµh, νh = λh −
1

ηh
.

(9)

Henceforth we refer to this specification as CHJ.

While CHJ allows for both the leverage effect and conditional skewness, it does not separate
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the volatility of volatility from the leverage effect on the one hand, and conditional skewness from

volatility on the other hand. In particular, conditional skewness and volatility are related by

st = 3ηh/
√
ht. In consequence, the sign of conditional skewness is constant over time and equal to

the sign of the parameter ηh. This contrasts with the empirical evidence in Harvey and Siddique

(1999) that conditional skewness changes sign over time. Feunou et al.’s (2011) findings also suggest

that, although conditional skewness is centered around a negative value, return skewness may take

positive values.

Richer models of return volatility may also include several volatility components. In an affine

setting, Christoffersen et al. (2008) introduce a two-factor generalization of HN to long- and short-

run volatility components, which henceforth we refer to as CJOW. In addition to the dynamics of

return (2), the volatility dynamics may be written as follows:

ht = h1,t + h2,t where

 h1,t+1 = µ1h + φ1hh1,t + α1hu
2
t+1 − 2α1hβ1h

√
htut+1

h2,t+1 = µ2h + φ2hh2,t + α2hu
2
t+1 − 2α2hβ2h

√
htut+1,

(10)

with µ1h = 0, since only the sum µ1h + µ2h is identifiable.

Regarding the SV literature, most of the existing SV models assume that the return innovation

is normally distributed conditional on the information set; see, for example, Taylor(1986, 1994),

Jacquier et al. (1994), Mahieu and Schotman (1998) and Kim et al. (1998). In the studies of Ruiz

(1994), Harvey et al. (1994), Sandmann and Koopman (1998), Jacquier et al. (2004), and Chib

et al. (2002) the basic SV model is extended to allow for a heavy-tailed conditional distribution

of returns. In addition, a correlation between return and variance innovations, the leverage effect,

is introduced in Jacquier et al. (2004). As shown by Liesenfeld and Jung (2000), heavy-tailed

distributions allow to capture more adequately the leptokurtic distribution of the returns and the

low but slowly decaying autocorrelation functions of the squared returns. This corroborates Bai et

al. (2003) who show how volatility clustering and conditional non-normality contribute interactively

and symmetrically to the unconditional kurtosis of returns. However, none of these papers assume

an asymmetric conditional distribution of returns and, moreover they are all non-affine models.

Instead, we analyse the impact of conditional non-normality with a focus on the asymmetry of the

conditional return distribution. Indeed, leverage effect alone is not enough to account for both the
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unconditional skewness and long-horizon cross-correlations between returns and squared returns.

We also focus on affine models as they allow for closed-form return moments and option prices.

In the next section, we develop an affine multivariate latent-factor model of returns such that

both conditional variance ht and conditional skewness st are stochastic. We refer to such a model

as SVS. The proposed model is parsimonious and solves for the limitations of existing models.

Later in Sections 4 and 5, we use S&P500 index returns and option data to examine the relative

performance of the one- and two-factor SVS to the GARCH alternatives (HN, CHJ and CJOW).

3 Building an SV Model with Conditional Skewness

3.1 The Model Structure

For each variable in what follows, the time subscript denotes the date from which the value of the

variable is observed by the economic agent; to simplify notations, the usual scalar operators will

also apply to vectors element-by-element. The joint distribution of returns rt+1 and latent factors

σ2
t+1 conditional on previous information denoted It and containing previous realizations of returns

rt = {rt, rt−1, ...} and latent factors σ2
t = {σ2

t , σ
2
t−1, ...} may be decomposed as follows:

f
(
rt+1, σ

2
t+1 | It

)
≡ fc

(
rt+1 | σ2

t+1, It
)
× fm

(
σ2
t+1 | It

)
. (11)

Based on this, our modeling strategy consists of specifying, in a first step, the distribution of returns

conditional on factors and previous information, and, in a second step, the dynamics of the factors.

The first step will be characterized by inverse Gaussian shocks, and the second step will follow a

multivariate autoregressive gamma process.

3.1.1 Standardized Inverse Gaussian Shocks

The dynamics of returns in our model is built upon shocks drawn from a standardized inverse

Gaussian distribution. The inverse Gaussian process has been investigated by Jensen and Lunde

(2001), Forsberg and Bollerslev (2002), and Christoffersen et al. (2006). See also the excellent

overview of related processes in Barndorff-Nielsen and Shephard (2001).

The log moment-generating function of a discrete random variable that follows a standardized
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inverse Gaussian distribution of parameter s, denoted SIG (s), is given by

ψ (u; s) = lnE [exp (uX)] = −3s−1u+ 9s−2

(
1−

√
1− 2

3
su

)
. (12)

For such a random variable, one has E [X] = 0, E
[
X2
]

= 1 and E
[
X3
]

= s, meaning that s is

the skewness of X. In addition to the fact that the SIG distribution is directly parameterized by

its skewness, the limiting distribution when the skewness s tends to zero is the standard normal

distribution, that is SIG (0) ≡ N (0, 1). This particularity makes the SIG an ideal building block

for studying departures from normality.

3.1.2 Autoregressive Gamma Latent Factors

The conditional distribution of returns is further characterized by K latent factors, the components

of the K-dimensional vector process σ2
t+1. We assume that σ2

t+1 is a multivariate autoregressive

gamma process with mutually independent components. We use this process to guarantee the

positivity of the volatility factors so that volatility itself is well defined. Its cumulant-generating

function, conditional on It, is given by

Ψσ
t (y) ≡ lnE

[
exp

(
y>σ2

t+1

)
| It
]

=
K∑
i=1

fi (yi) +
K∑
i=1

gi (yi)σ
2
i,t,

fi (yi) = −νi ln (1− αiyi) and gi (yi) =
φiyi

1− αiyi
.

(13)

Each factor σ2
i,t is a univariate autoregressive gamma process, which is an AR(1) process with

persistence parameter φi. The parameters νi and αi are related to persistence, unconditional

mean µi and unconditional variance ωi as νi = µ2
i /ωi and αi = (1− φi)ωi /µi . A more in-depth

treatment of the univariate autoregressive gamma process can be found in Gourieroux and Jasiak

(2006) and Darolles et al. (2006). Their analysis is extended to the multivariate case and applied

to the term structure of interest rates modeling by Le et al. (2010). The autoregressive gamma

process also represents the discrete-time counterpart to the continuous-time square-root process

that has previously been examined in the SV literature (see, for example, Singleton 2006, p. 110).

We denote by mσ
t , vσt and ξσt the K-dimensional vectors of conditional means, variances, and
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third moments of the individual factors, respectively. Their ith component is given by

mσ
i,t = (1− φi)µi + φiσ

2
i,t and vσi,t = (1− φi)2 ωi +

2 (1− φi)φiωi
µi

σ2
i,t,

ξσi,t =
2 (1− φi)3 ω2

i

µi
+

6 (1− φi)2 φiω
2
i

µ2
i

σ2
i,t.

(14)

The AR(1) process σ2
i,t thus has the formal representation

σ2
i,t+1 = (1− φi)µi + φiσ

2
i,t +

√
vσi,tzi,t+1 (15)

where vσi,t is given in equation (14) and zi,t+1 is an error with mean zero and unit variance and

skewness ξσi,t

(
vσi,t

)−3/2
. The conditional density function of an autoregressive gamma process is

obtained as a convolution of the standard gamma and Poisson distributions. A discussion and a

formal expression of that density can be found in Singleton (2006, p. 109).

3.1.3 The Dynamics of Returns

Formally, we assume that logarithmic returns have the following dynamics:

rt+1 = ln
Pt+1

Pt
= µrt + urt+1, (16)

where P is the price of the asset, µrt ≡ Et [rt+1 | It] denotes the expected (or conditional mean of)

returns, which we assume are given by

µrt = λ0 + λ>σ2
t , (17)

and urt+1 ≡ rt+1 − Et [rt+1 | It] represents the unexpected (or innovation of) returns, which we

assume are given by

urt+1 = β>
(
σ2
t+1 −mσ

t

)
+ σ>t+1ut+1. (18)

Our modeling strategy thus decomposes unexpected returns into two parts: a contribution due to

factor innovations and another due to shocks that are orthogonal to factor innovations. We assume

that the ith component of this K-dimensional vector of shocks ut+1 has a standardized inverse
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Gaussian distribution, conditional on factors and past information,

ui,t+1 |
(
σ2
t+1, It

)
∼ SIG

(
ηiσ
−1
i,t+1

)
, (19)

and that the K return shocks are mutually independent conditionally on
(
σ2
t+1, It

)
. If ηi = 0, then

ui,t+1 is a standard normal shock.

Under these assumptions, we have

lnE
[
exp (xrt+1) | σ2

t+1, It
]

=
(
µrt − β>mσ

t

)
x+

K∑
i=1

(βix+ ψ (x; ηi))σ
2
i,t+1, (20)

where the function ψ (·, s) is the cumulant-generating function of the standardized inverse Gaussian

distribution with skewness s as defined in equation (12). In total, the model has 1+6K parameters

grouped in the vector θ =
(
λ0, λ

>, β>, η>, µ>, φ>, ω>
)>
. The scalar λ0 is the drift coefficient in

conditional expected returns. All vector parameters in θ are K-dimensional. Namely, the vector λ

contains loadings of expected returns on the K factors, the vector β contains loadings of returns

on the K factor innovations, the vector η contains skewness coefficients of the K standardized

inverse Gaussian shocks, and the vectors µ, φ and ω contain unconditional means, persistence and

variances of the K factors, respectively.

Although, for the purpose of this paper, we limit ourselves to a single-return setting, the model

admits a straightforward generalization to multiple returns. Also, we further limit our empirical

application in this paper to one and two factors. Since the empirical evidence regarding the time-

varying conditional mean is weak from historical index daily returns data, we will restrict ourselves

in the estimation section to λ = 0 and will pick λ0 to match the sample unconditional mean of

returns, leaving us with 5K critical parameters from which further interesting restrictions can be

considered.

3.2 Volatility, Conditional Skewness and the Leverage Effect

In the previous subsection, we did not model conditional volatility and skewness or other higher

moments of returns directly. Instead, we related returns to stochastic linearly independent positive

factors. In this section, we derive useful properties of the model and discuss its novel features in
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relation to the literature. In particular, we show that, in addition to stochastic volatility and the

leverage effect, the model generates conditional skewness. This nonzero and stochastic conditional

skewness, coupled with the ability of the model to generalize to multiple returns and multiple

factors, constitutes the main significant difference from previous affine SV models in discrete time.

The conditional variance, ht, and the conditional skewness, st, of returns, rt+1, may be expressed

as follows:

ht ≡ Et
[
(rt+1 − µrt )

2 | It
]

= ι>mσ
t +

(
β2
)>
vσt =

K∑
i=1

hi,t, (21)

sth
3/2
t ≡ Et

[
(rt+1 − µrt )

3 | It
]

= η>mσ
t + 3β>vσt +

(
β3
)>
ξσt =

K∑
i=1

%i,t, (22)

with

hi,t = c0i,h + ci,hσ
2
i,t and %i,t = c0i,s + ci,sσ

2
i,t, (23)

where ι is the K-dimensional vector of ones, and the coefficients ci,h and ci,s depend on model

parameters θ. These coefficients are explicitly given by

c0i,h = (1− φi)
(
µi + (1− φi)ωiβ2

i

)
and ci,h =

(
1 +

2 (1− φi)ωiβ2
i

µi

)
φi,

c0i,s = (1− φi)

(
ηiµi + 3 (1− φi)ωiβi +

2 (1− φi)2 ω2
i β

3
i

µi

)
,

ci,s =

(
ηi +

6 (1− φi)ωiβi
µi

+
6 (1− φi)2 ω2

i β
3
i

µ2
i

)
φi.

(24)

Conditional on It, covariance between returns rt+1 and volatility ht+1 (the leverage effect) may

be expressed as:

Cov (rt+1, ht+1 | It) = (βch)> vσt =
K∑
i=1

ϑi,t with ϑi,t = c0i,rh + ci,rhσ
2
i,t, (25)

where ch = (c1,h, c2,h, . . . , cK,h)> and the coefficients ci,rh are explicitly given by

c0i,rh =

(
1 +

2 (1− φi)ωiβ2
i

µi

)
(1− φi)2 φiωiβi,

ci,rh = 2

(
1 +

2 (1− φi)ωiβ2
i

µi

)
(1− φi)φ2

iωiβi
µi

.

(26)
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It is not surprising that the parameter β alone governs the conditional leverage effect, since it

represents the slope of the linear projection of returns on factor innovations. In particular, for

the one-factor SVS model to generate a negative correlation between spot returns and variance

as postulated by Black (1976) and documented by Christie (1982) and others, the parameter β1

should be negative.

In our SVS model, contemporaneous asymmetry η, alone, does not characterize conditional

skewness, as shown in equation (22). The parameter β, which alone characterizes the leverage

effect, also plays a central role in generating conditional asymmetry in returns, even when η = 0.

In contrast to SV models discussed in Section 2, where the leverage effect generates skewness only

in the multiple-period conditional distribution of returns, in our setting it invokes skewness in the

single-period conditional distribution as well.

To better understand the flexibility of the SVS model in generating conditional skewness, we

consider the one-factor SVS without loss of generality. The left-hand side of the last equality in

equation (22) shows that conditional skewness is the sum of three terms. The first term has the

sign of η1 and the last two terms have the same sign of β1. A negative β1 is necessary to generate

the well-documented leverage effect. In that case, the last two terms in (22) are negative. The sign

of conditional skewness will then depend on η1. If η1 is zero or negative, then conditional skewness

is negative over time, as in CHJ. Note that conditional skewness may change sign over time if η1

is positive and c01,sc1,s < 0. There are lower and upper positive bounds on η1 such that this latter

condition holds. These bounds are, respectively, −3 (1− φ1)ω1β1/µ1 − 2 (1− φ1)2 ω2
1β

3
1/µ

2
1 and

−6 (1− φ1)ω1β1/µ1−6 (1− φ1)2 ω2
1β

3
1/µ

2
1. This shows that the one-factor SVS model can generate

a more realistic time series of conditional skewness compared to CHJ.

3.3 Comparison to Continuous-Time Affine SVJ Processes

In this subsection, we discuss the similarities between existing continuous-time SV models with

jumps (SVJ) and our new discrete-time SVS model. Non affine models are out of the scope of this

paper. Our benchmark continous-time affine SVJ model has been considered in Pan (2002) and

Bates (2006), and variants have been estimated on stock index returns by Andersen et al. (2002),
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Chernov et al. (2003), and Eraker et al. (2003). It has the following dynamics:

dSt
St

=
[
µ0c + µ1cVt − (λ0c + λ1cVt) k̄c

]
dt+

√
Vt

(
ρcdW1t +

√
1− ρ2

cdW2t

)
+ (eγs − 1)dNt

dVt = (α− βVt) dt+ σ
√
VtdW1t

(27)

where dSt/St is the instantaneous asset return; Vt is its instantaneous variance conditional upon

no jumps; W1t and W2t are independent Wiener processes; Nt is a Poisson counter with intensity

λ0c+λ1cVt for the incidence of jumps; γs ∼ N
(
γ̄c, δ

2
c

)
is the random Gaussian jump in the log asset

price conditional upon jump occurring; k̄c is the expected percentage jump size: k̄c ≡ E [eγs − 1].

For the SVJ model, we derive the conditional variance, the conditional covariance between the

return and the conditional variance, and the conditional skewness. We then compare the properties

of the SVJ to those of the one-factor SVS based on these three moment expressions. As a first

advantage of the SVS, analytic expressions of these moments for the SVJ are cumbersome and

cannot be displayed, thus difficult to interpret or analyze. For this reason, we have to restrict the

SVJ to some well-known variants. We set µ0c = 0 and µ1c = 1/2, and we focus on the variant with

constant jump intensity λ0c, meaning that λ1c = 0. We have

ht =

(
βc + e−βc − 1

)
β2
c

αc +

(
1− e−βc

)
βc

Vt

Covt (rt+1, ht+1) = ρc

((
1− (1 + βc) e

−βc
)
αcσc

β2
c

−
(
e−βc − 1

)
σc

eβc − 1
Vt

)
(28)

sth
3/2
t = λ0c

(
3δ2
c γ̄c + γ̄3

c

)
+ ρc

(
3
(
e−βc (βc + 2) + βc − 2

)
αcσc

β3
c

+
3
(
1− (1 + βc) e

−βc
)
σc

β2
c

Vt

)
.

First, if λ0c = 0, the SVJ corresponds to the Heston (1993) model. It has similar features as the

SVS with contemporaneous normality, in the sense that both models have the same number of

parameters, and that a single parameter drives both the conditional skewness and the conditional

leverage effect. Indeed, if ρc = 0, both the conditional skewness and the leverage effect are zero.

Next, with λ0c 6= 0, the SVJ has three more parameters, the conditional leverage effect remains

unchanged and is driven by ρc solely. However allowing for nonzero and constant jump intensity λ0c,

we can still generate a constant conditional skewness through jumps even if ρc = 0. Time-varying

conditional skewness in the absence of leverage effect necessitates time-varying jump intensity for
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the SVJ, and for the SVS it corresponds to the case where β1 = 0 and η1 6= 0, with the advantage

that the SVS has three parameters less. Finally, the full SVJ has similar properties as the one-

factor SVS, but has three parameters more. Again, because of time-varying jump intensity, the

expression for conditional skewness in the SVJ model is cumbersome and cannot be displayed. In

this regard the SVS is much more simpler and tractable, as it yields elegant and intuitive expressions

of conditional moments. In the empirical section we restrict µ1c so that the conditional mean of

returns is constant and pick µ0c so that it matches the sample unconditional mean.

In the next section, we develop an estimation procedure for the one- and two-factor SVS models

together with their competitors, HN, CHJ, CJOW and SVJ. We seek a unified framework where

these different models can be estimated and evaluated according to the same criteria, thereby

facilitating their empirical comparison. Our proposed framework uses the generalized method of

moments to estimate, test and compare the models under consideration. It exploits the affine

property of the models to compute analytically model-implied unconditional moments of returns

that are further compared to their empirical counterparts. We describe our approach in detail in

the next section, and in Section 5 we compare the option-pricing performance of the models.

4 Fitting the Historical Return Distribution

4.1 GMM Procedure

We develop a method for computing analytically moments of the form

µr,j (n,m) = E
[
rnt r

m
t+j

]
, j > 0, n ≥ 0, m > 0.

A detailed description is provided in the external appendix. All these moments are functions of

the parameter vector θ that governs the joint dynamics of returns and the latent factors. We can

then choose N pertinent moments to perform the GMM estimation of the returns model. Since

the moments of observed returns implied by a given model can directly be compared to their

sample equivalent, our estimation setup evaluates the performance of a given model in replicating

well-known stylized facts.

Let gt (θ) =
[
rnit r

mi
t+ji
− µr,ji (ni,mi)

]
1≤i≤N

denote the N×1 vector of the chosen moments. We
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have E [gt (θ)] = 0 and we define the sample counterpart of this moment condition as follows:

ĝ (θ) =


Ê
[
rn1
t r

m1
t+j1

]
− µr,j1 (n1,m1)

. . .

Ê
[
rnNt rmNt+jN

]
− µr,jN (nN ,mN )

 . (29)

Given the N ×N matrix Ŵ used to weight the moments, the GMM estimator θ̂ of the parameter

vector is given by

θ̂ = arg min
θ

T
(
ĝ (θ)> Ŵ ĝ (θ)

)
, (30)

where T is the sample size. Interestingly, the heteroskedasticity and autocorrelation (HAC) esti-

mator of the variance-covariance matrix of gt (θ) is simply that of the variance-covariance matrix

of
[
rnit r

mi
t+ji

]
1≤i≤N

, which does not depend on the vector of parameter θ. This is an advantage,

since with a nonparametric empirical variance-covariance matrix of moment conditions, the optimal

GMM procedure can be implemented in one step. It is also important to note that two different

models can be estimated via the same moment conditions and weighting matrix. Only the model-

implied moments [µr,ji (ni,mi)]1≤i≤N differ from one model to another in this estimation procedure.

In this case, the minimum value of the GMM objective function itself is a criterion for comparison

of the alternative models, since it represents the distance between the model-implied moments and

the actual moments.

We weigh the moments using the inverse of the diagonal of their long-run variance-covariance

matrix:

Ŵ =
{
Diag

(
V̂ ar [gt]

)}−1
.

This matrix is nonparametric and puts more weight on moments with low magnitude. If the number

of moments to match is large, as is the case in our estimation in the next section, then inverting the

long-run variance-covariance matrix of moments will be numerically unstable. Using the inverse

of the diagonal instead of the inverse of the long-run variance-covariance matrix itself allows for

numerical stability if the number of moments to match is large, since inverting a diagonal matrix

is simply taking the diagonal of the inverse of its diagonal elements. The distance to minimize
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reduces to
N∑
i=1

Ê
[
rnit r

mi
t+ji

]
− E

[
rnit r

mi
t+ji

]
σ̂
[
rnit r

mi
t+ji

]
/
√
T

2

, (31)

where observed moments are denoted with a hat and the model-implied theoretical moment without.

In some cases, this GMM procedure has a numerical advantage compared to the maximum-

likelihood estimation even when the likelihood function can be derived. Maximum-likelihood es-

timation becomes difficult to perform numerically and theoretically, especially when the support

of the likelihood function is parameter-dependent. While the appeal of GARCH models relies on

the availability of their likelihood function in analytical form, which eases their estimation, the

support of the likelihood function for CHJ is parameter-dependent. This complicates its estimation

by maximum likelihood and, most importantly, its inference. In fact, there exists no general theory

in the statistical literature about the distributional properties of the maximum-likelihood estimator

when the support of the likelihood function is parameter-dependent.

On the other hand, the maximum-likelihood estimation of semi-affine latent variable models of

Bates (2006) and the quasi-maximum-likelihood estimation based on the Kalman recursion have

the downside that critical unconditional higher moments (skewness and kurtosis) of returns can be

poorly estimated due to the second-order approximation of the distribution of the latent variable

conditional on observable returns. Moreover, in single-stage estimation and filtering methods such

as the unscented Kalman filter and Bates’s (2006) algorithm, approximations affect both parameter

and state estimations.

Conversely, our GMM procedure matches critical higher moments exactly and requires no ap-

proximation for parameter estimation. Given GMM estimates of model parameters, Bates’s (2006)

procedure, or any other filtering procedure, such as the unscented Kalman filter, can be followed for

the state estimation. In this sense, approximations required by these techniques affect only state

estimation.

4.2 Data and Parameter Estimation

Using daily returns on the S&P500 index from January 2, 1962 to December 31, 2010, we estimate

the 5-parameter unconstrained one-factor SVS model, the 4-parameter one-factor SVS model with

the constraint η1 = 0 (contemporaneous normality), and the 10-parameter unconstrained two-
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factor SVS model, which we respectively denote SVS1FU, SVS1FC and SVS2FU. We also estimate

their GARCH competitors, the one-factor models CHJ with five parameters and HN with four

parameters, and the two-factor model CJOW with seven parameters.

To perform the GMM procedure, we need to decide which moments to consider. The top left

panel of Figure 1 shows that autocorrelations of daily squared returns are significant up to more

than a six-month lag (126 trading days). The top right panel shows that correlations between daily

returns and future squared returns are negative and significant up to a two-month lag (42 trading

days). We use these critical empirical facts as the basis for our benchmark estimation. We then

consider the moments

{
E
[
r2
t r

2
t+j

]}
j=1 to 126

and
{
E
[
rtr

2
t+j

]}
j=1 to 42

.

The return series has a standard deviation of 8.39E-3, a skewness of -0.8077 and an excess kurtosis

of 15.10, and these sample estimates are all significant at the 5% level. We then add the moments

{E [rnt ]}n=2 to 4

in order to match this significant variance, skewness and kurtosis. Thus, in total, our benchmark

estimation uses 126+42+3=171 moments and the corresponding results are provided in Panel A of

Table 1.

Starting with the SVS model, Panel A of Table 1 shows that β1 is negative for the one-factor

SVS and both β1 and β2 are negative for the two-factor SVS. These coefficients are all significant

at conventional levels, as well as all the coefficients describing the factor dynamics. The SVS model

thus generates the well-documented negative leverage effect. Contemporaneous asymmetry does not

seem to be important for the historical distribution of returns. For the one-factor SVS model, the

minimum distance between actual and model-implied moments is 46.23 when η1 is estimated, and

46.77 when η1 is constrained to zero. The difference of 0.54 that follows a χ2 (1) is not statistically

significant, since its p-value of 0.46 is larger than conventional levels.

The minimum distance between actual and model-implied moments is 32.27 for the SVS2FU

model. The difference from the SVS1FC model is then 14.50 and follows a χ2 (6). It appears to
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be statistically significant, since the associated p-value is 0.02, showing that the SVS2FU model

outperforms the one-factor SVS model. The SVS2FU model has a long-run volatility component

with a persistence of 0.99148, a half-life of 81 days, as well as a short-run volatility component

with a persistence of 0.81028, a half-life of approximately three days. The factor persistence in

the one-factor SVS model, 0.98235 for the SVS1FU and 0.97985 for the SVS1FC, is intermediate

between these long- and short-run volatility components, having a half-life of 39 days and 34 days,

respectively.

Panel A of Table 1 also shows results for the GARCH models. All parameters are statistically

significant at conventional levels and the parameter η1h is negative by our new estimation strategy,

corroborating the findings of Christoffersen et al. (2006). In addition, the “LR-test” largely rejects

HN against both CHJ and CJOW, with p-values lower than or equal to 2%, suggesting that

conditional skewness as well as more than one factor are both important features of the historical

returns distribution. It is important to note that the long- and short-run volatility components

implied by CJOW have persistence, 0.99193 and 0.80466, comparable to those of their analogue

implied by the SVS2FU model, 0.99148 and 0.81028 respectively. The volatility persistence in CHJ

and HN, 0.98232 and 0.98457 respectively, is also intermediate between the long- and short-run

volatility components.

Although the SVS1FC model and HN have the same number of parameters, the fit of actual

moments is different. The fit is better for the SVS1FC model, 46.77, compared to 52.94 for HN, a

substantial difference of 6.17, attributable to conditional skewness in the SVS1FC model. Also note

that the fit of the SVS1FC model and CHJ is comparable, 46.77 against 46.35, although the SVS1FC

has one less parameter. Non-reported results show that several constrained versions of the two-

factor SVS model cannot be rejected against the SVS2FU model, and they all outperform CJOW

as well. We examine one of these constrained versions in more detail in the option-pricing empirical

analysis. Interestingly, a larger minimum distance between actual and model-implied moments of

55.65 for SVJ compared to all one-factor SVS and GARCH competitors shows that the discrete-time

models considered here outperform the continuous-time dynamics, despite a significantly higher

number of parameters for the continuous-time model.

To further visualize how well the models reproduce the stylized facts, we complement the results

in Panel A of Table 1 by plotting the model-implied autocorrelations and cross-correlations together
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with actual ones in Figure 1, for both SVS and GARCH. The figure highlights the importance of

a second factor in matching autocorrelations and cross-correlations at both the short and the long

horizons. In particular, a second factor is necessary to match long-horizon autocorrelations and

cross-correlations.

Panel B of Table 1 shows the estimation results when we decide to match the correlations

between returns and future squared returns up to only 21 days instead of the 42 days in Panel

A. In Panel B, we therefore eliminate 21 moments from the estimation. All the findings in Panel

A still hold in Panel B. In the external appendix, a table shows the estimation results over the

subsample starting January 2, 1981. All findings reported for the full sample are confirmed over

this subsample.

5 Option Pricing Analysis

5.1 Option Pricing with Stochastic Skewness

In this section, we assume that both GARCH and SVS dynamics are under the risk-neutral measure.

Hence we have

E [exp (rt+1) | It] = exp (rf ) , (32)

where rt+1 and rf refer to the risky return and the constant risk-free rate from date t to date

t + 1, respectively. In particular, for the SVS model, the pricing restriction (32) implies that the

coefficients λ0 and λi, i = 1, . . . ,K are given by

λ0 = rf +

K∑
i=1

νi (βiαi + ln (1− αi (βi + ψ(1; ηi)))) ,

λi = φi

(
βi −

βi + ψ(1; ηi)

1− α (βi + ψ(1; ηi))

)
, i = 1, . . . ,K.

Because all models considered in this paper are affine, the price at date t of a European call option

with strike price X and maturity τ admits a closed-form formula, reported in the external appendix

owing to space limitations. We next discuss the option data used in our empirical analysis. Then

we estimate the models by maximizing the fit to our option data.
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5.2 Option Data

We use closing prices on European S&P500 index options from OptionMetrics for the period January

1, 1996 through December 31, 2004. In order to ensure that the contracts we use are liquid, we rely

on only options with maturity between 15 and 180 days. For each maturity on each Wednesday, we

retain only the seven most liquid strike prices. We restrict attention to Wednesday data to enable

us to study a fairly long time-period while keeping the size of the data set manageable. Our sample

has 10,138 options. Using Wednesday is common practice in the literature, to limit the impact of

holidays and day-of-the week effects (see Heston and Nandi 2000; Christoffersen and Jacobs 2004).

Table 2 describes key features of the data. The top panel of Table 2 sorts the data by six mon-

eyness categories and reports the number of contracts, the average option price, the average Black-

Scholes implied volatility (IV), and the average bid-ask spread in dollars. Moneyness is defined

as the implied index futures price, F , divided by the option strike price X. The implied-volatility

row shows that deep out-of-the-money puts, those with F/X > 1.06, are relatively expensive. The

implied-volatility for those options is 25.73%, compared with 19.50% for at-the-money options. The

data thus display the well-known smirk pattern across moneyness. The middle panel sorts the data

by maturity reported in calendar days. The IV row shows that the term structure of volatility is

roughly flat, on average, during the period, ranging from 20.69% to 21.87%. The bottom panel

sorts the data by the volatility index (VIX) level. Obviously, option prices and IVs are increasing

in VIX, and dollar spreads are increasing in VIX as well. More importantly, most of our data are

from days with VIX levels between 15% and 35%.

5.3 Estimating Model Parameters from Option Prices

As is standard in the derivatives literature, we next compare the option-pricing performance of

HN, CHJ, CJOW, SVS1FU, SVS1FC, SVS2FU and the 8-parameter two-factor model with the

constraints η1 = 0 and β2 = 0, which we further denote as SVS2FC. We use the implied-volatility

root mean squared error (IVRMSE) to measure performance. Renault (1997) discusses the benefits

of using the IVRMSE metric for comparing option-pricing models. To obtain the IVRMSE, we

invert each computed model option price CMod
j using the Black-Scholes formula, to get the implied

volatility IVMod
j . We compare these model IVs to the market IV from the option data set, denoted
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IVMarket
j , which is also computed by inverting the Black-Scholes formula. The IVRMSE is now

computed as

IV RMSE ≡

√√√√ 1

N

N∑
j=1

e2
j , (33)

where ej ≡ IVMkt
j − IVMod

j and where N denotes the total number of options in the sample. We

estimate the risk-neutral parameters by maximizing the Gaussian IV option-error likelihood:

lnLO ∝ −1

2

N∑
j=1

(
ln
(
IV RMSE2

)
+ e2

j/IV RMSE2
)
. (34)

Model option prices CMod
j depend on time-varying factors. In the GARCH option-pricing

literature, it is standard to compute the volatility process using the GARCH volatility recursion,

since the factors are observable. Factors in the SVS models, however, are latent, and we need to filter

them in order to price options. To remain consistent and facilitate comparison with the GARCH

alternative, we develop a simple GARCH recursion that approximates the volatility dynamics in

the SVS model by matching the mean, variance, persistence and covariance with the returns of

each volatility component. The dynamics of each volatility component is then approximated using

Heston and Nandi’s (2000) GARCH recursion (3), where the GARCH coefficients are expressed in

terms of the associated SVS factor coefficients, as follows:

µih = µi +
(
1− φ2

i

)
ωiβ

2
i and φih = φi, (35)

αih = φi

√
µiωi

(
1− φ2

i

)
2µih

(
1 +

2 (1− φi)ωiβ2
i

µi

)
and βih = −βi

√(
1− φ2

i

)
ωi

2µiµih
. (36)

Our matching procedure can be viewed as a second-order GARCH approximation of the SVS

dynamics, intuitively analogue to the approximation of the log characteristic function used by

Bates (2006) when filtering affine latent processes.

The top panel of Table 3 reports the results of the option-based estimation for SVS models, and

the bottom panel reports the results of the GARCH alternative. All parameters are significantly

estimated at the 1% level. Compared to historical parameters, the risk-neutral dynamics are more

negatively skewed and the variance components are more persistent. These two findings are very

common in the option-pricing literature. Higher negative skewness of the risk-neutral dynamics
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are reflected in higher negative values of βi and ηi estimates for SVS models, and a larger negative

value of βih estimates for GARCH models. For example, the estimated values of β1 and η1 for

the SVS1FU model are, respectively, -2450 and -0.2325 for the risk-neutral dynamics in Table 3,

compared to -500 and -0.00364 respectively for the historical dynamics in Panel A of Table 1.

The persistence of the variance for the SVS1FU model is 0.9920 for the risk-neutral dynamics in

Table 3 and 0.9824 for the historical dynamics in Panel A of Table 1. The risk-neutral variance is

more persistent than the physical variance. Also, note that, for the SVS2FU model, both volatility

components are now very persistent under the risk-neutral dynamics, with half-lives of 30 days for

the short-run component and 385 days for the long-run component, compared to 3 days and 81

days, respectively, under the historical dynamics.

The last three rows of each panel in Table 3 show the log likelihood, the IVRMSE metric of

the models and their ratios relative to HN. The IVRMSE for the restricted one-factor SVS model,

SVS1FC, outperforms its one-factor GARCH competitors, HN and CHJ. The IVRMSE for the

SVS1FC model is 3.56%, compared with 3.89% and 3.78% for HN and CHJ, corresponding to

an improvement of 9.38% and 6.35%, respectively. Moving to the unrestricted one-factor SVS

model, SVS1FU, considerably reduces the pricing error and yields an impressive improvement of

23.26% and 19.85% over HN and CHJ, respectively. This result illustrates the superiority of our

conditional skewness modeling approach over existing affine GARCH, since CHJ has the same

number of parameters as the SVS1FU model, and more than the SVS1FC model. This result

also highlights the clear benefit of allowing more negative skewness in the risk-neutral conditional

distribution of returns.

Not surprisingly, the two-factor GARCH model (i.e., CJOW), with a RMSE of 3.00%, fits the

option data better than both the one-factor GARCH and SVS models. In fact, as pointed out by

Christoffersen et al. (2008) and Christoffersen et al. (2009), a second volatility factor is needed to

fit appropriately the term structure of risk-neutral conditional moments. Our restricted two-factor

SVS model, SVS2FC, has a comparable fit to CJOW, with a RMSE of 2.98%. The performance of

the unconstrained two-factor SVS model is almost similar to the constrained version, reflecting the

fact that both η1 and β2 are not significantly estimated at the conventional 5% level. Option pricing

thus seems to favor a risk-neutral distribution of stock prices that features a Gaussian as well as

a negatively skewed shock; i.e., a discrete-time counterpart to a continuous-time jump-diffusion
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model.

We further compare the performance of our SVS model specifications to variants of the SVJ

model discussed in Section 3.3. For this second set of comparisons, we fit the option data using

a well-known approach in the SV option pricing literature, an iterative two-step procedure, pro-

posed, studied and used in Bates (2000), Huang and Wu (2004), Christoffersen et al. (2009) and

more recently in Andersen et al. (2012). The method consists in estimating both parameters and

unobservable latent factors in two steps. In Step 1, for a given set of structural parameters, and a

given time t, we minimize the pricing errors to get estimates of unobservable latent factors. In Step

2, given the set of latent factors estimated from Step 1, we solve one aggregate sum of squared pric-

ing errors optimization problem to get a new estimation of the model parameters. The procedure

iterates between Step 1 and Step 2 until no further significant decreases in the overall objective in

Step 2 are obtained.

The top panel of Table 4 reports the results of the option-based estimation for SVS models, and

the bottom panel reports the results of the SVJ alternative, using the iterative two-step procedure.

All critical parameters are significantly estimated at the 1% level. SVS estimation results based

on the iterative two-step procedure are comparable to those based on the approximate GARCH-

like filtering method exploited earlier. With a RMSE of 1.52%, the full SVJ specification with 8

parameters just slightly outperforms the full one-factor SVS specification with 5 parameters and

an RMSE of 1.55%. The full two-factor SVS model with 10 parameters has a RMSE of 1.51%, a

fit that is comparable to the full SVJ specification. However, both the SVS1FU and the SVS2FU

models achieve a higher likelihood compared to the SVJ models. We can then simply argue that

SVS and SVJ models have a comparable fit on option prices, and we recall from Section 4.2 results

that SVS models outperform the SVJ model in fitting the historical distribution of returns.

Overall, the results of model estimation based on option data confirm the main conclusions from

the GMM estimation based on returns in Section 4.2. Both conditional skewness in returns and

a second volatility factor are necessary to reproduce the observed stylized facts, and disentangling

the dynamics of conditional volatility from the dynamics of conditional skewness offers substantial

improvement in fitting the distribution of asset prices.

In Table 5, we dissect the overall IVRMSE results reported in Tables 3 and 4, by sorting the

data by moneyness, maturity and VIX levels, using the bins from Table 2. The top panel of Table
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5 reports the IVRMSE for the various SVS, GARCH and SVJ models by moneyness. Comparing

SVS versus GARCH, we see that the two-factor models, with the lowest overall IVRMSE in Table

3, also have the lowest IVRMSE in each of the six moneyness categories. The benefits offered by

the two-factor models are therefore not restricted to any particular subset of strike prices. Note

that all models tend to perform worst for deep out-of-the-money put options (F/X > 1.06), also

corresponding to the highest average implied volatility, as shown by the top panel of Table 2. For

example, HN, CHJ and the SVS1FC model fit deep OTM options with IVRMSEs of 5.54%, 5.25%

and 5.04%, respectively. With a fit of 4.02%, CJOW is outperformed by the SVS1FU, the SVS2FC

and the SVS2FU models, which have fits of 3.81%, 3.60% and 3.58%, respectively.

For deep-in-the-money options (F/X < 0.96), CJOW has the best fit, an IVRMSE of 2.99%,

compared to more than 3.31% for any other concurrent model. For all other moneyness categories,

CJOW and the two-factor SVS models have comparable fits, the difference in their IVRMSEs

being less than 0.10%. The performance of the SVS1FU model is very consistent across strikes as

well, the best among the one-factor models. Thus, contrary to the historical dynamics of returns,

contemporaneous asymmetry appears to be important in characterizing the risk-neutral dynamics,

and the low IVRMSE of the SVS1FU model compared to the SVS1FC model across all categories

demonstrates the impact of the significant and negative estimate of η1 reported in Table 3.

The middle panel of Table 5 reports the IVRMSE across maturity categories. Again we see that

all two-factor models have a comparable fit across all maturity categories, but the shortest maturity

(DTM < 30) where the two-factor SVS models perform better compared to CJOW. The SVS1FU

model still outperforms any other one-factor competitor along the maturity dimension. While

all models have relatively more difficulty fitting the shortest and the longest maturity compared

to intermediate maturity options, our results show the superiority of the SVS over the GARCH

regarding the shortest maturity options. With an IVRMSE of 3.14% for this category, the SVS1FU

model provides the best SVS fit, while the best GARCH fit of 3.66% is due to CJOW.

The bottom panel of Table 5 reports the IVRMSE across VIX levels. The two-factor models

provide the best fit across the six VIX categories, and the SVS1FU model remains the best one-

factor fit along this dimension. All models have difficulty fitting options when the level of market

volatility is high (V IX ≥ 35%), since, for all models, the IVRMSE is the highest for these VIX

levels.
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Comparing SVS versus SVJ through all the three panels of Table 5 and using RMSE values

reported in curly brackets, we observe that the SVS1FU model does as least as well as the SVJ model

in all moneyness categories but for deep-in-the-money options. The two-factor SVS significantly

outperforms any other alternative in all moneyness categories. To the contrary, the SVJ model

slightly outperforms the SVS1FU model across option maturity and VIX level categories.

To summarize, our option results show that, focusing on single-factor models, the empirical

performance of the SVS is superior to that of affine GARCH models and comparable to that of

affine SVJ models in fitting the risk-neutral distribution of asset prices inferred from option data.

However, while the two-factor affine GARCH model is comparable to the two-factor SVS in the

overall fit, results across different option categories are mixed.

6 Conclusion and Future Work

This paper presents a new approach for modeling conditional skewness in a discrete-time affine

stochastic volatility model. The model explicitly allows returns to be asymmetric conditional

on factors and past information. This contemporaneous asymmetry is shown to be particularly

important for the model to fit option data. An empirical investigation suggests that the flexibility

that the model offers for conditional skewness increases its option-pricing performance relative to

existing affine GARCH models. In particular, the one-factor SVS model with contemporaneous

asymmetry outperforms existing one-factor affine GARCH models across all option categories.

The paper also develops a methodology for estimating the historical distribution parameters of

a multivariate latent-factor model that nests the proposed SVS as well as existing affine GARCH

models. The setting allows for model comparison along the same statistics, the minimum distance

between model-implied and actual sample return moments.

In future research, it would be interesting to study the implications of the model for a parsi-

monious multiple-returns setting as well. An interesting exercise would be to look at “skewness

transmission” among international stock markets.
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The figure shows the actual autocorrelations of squared returns, Ĉorr
(
r2
t , r

2
t+j

)
, in the top left graph, and the

actual cross-correlations between returns and squared returns, Ĉorr
(
rt, r

2
t+j

)
, in the top right grapgh. It shows the

model-implied autocorrelations of squared returns, Corr
(
r2
t , r

2
t+j

)
, for SVS dynamics in the middle left graph and

for GARCH dynamics in the middle right graph. It also shows the model-implied cross-correlation between returns
and squared returns, Corr

(
rt, r

2
t+j

)
, for SVS dynamics in the bottom left graph and for GARCH dynamics in the

bottom right. Returns are those of the S&P500 index. The data are sampled at the daily frequency and cover the
period from January 2, 1962 to December 31, 2010, for a total of 12,336 observations.

Figure 1: Returns and Squared Returns: Actual and Model Implications
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Table 1: Estimation Results on S&P500 Index Returns: Full Sample
The entries of the table are GMM parameter estimates and tests for various SVS and GARCH models, as well as the SVJ model. Estimations are

performed for two different sets of moment conditions. The set of moments
{
E

[
r
j
t

]
, j = 1 to 4

}
and

{
E

[
r2t r

2
t+j

]
, j = 1 to 126

}
are used in

estimations and tests in both panels, in addition to the set
{
E

[
rtr

2
t+j

]
, j = 1 to 42

}
in Panel A and its subset

{
E

[
rtr

2
t+j

]
, j = 1 to 21

}
in

Panel B. Returns data are daily and span the period from January 2, 1962 to December 31, 2010, for a total of 12,336 observations. Newey-West
standard errors are given below the estimates. The row “min” shows the GMM criterion, with the smaller number being the better fit of the model.
The row “LR-test” shows the GMM analogue of the LR-test where the null hypothesis is the model SVS1FC for alternative SVS models, and the
model HN for alternative GARCH models. The row “p-value” shows the p-value of the associated test.

SVS1FU SVS1FC SVS2FU CHJ HN CJOW SVJ

Panel A

β1 -500.74 -437.62 -3762.95 β1h 83.99 83.27 55.97 αc 7.94E-07
171.98 180.48 1100.47 41.04 39.45 11.12 4.35E-07

η1 -0.00364 0.01831 η1h -0.00203 βc 1.69E-02
0.00201 0.00913 0.00069 7.89E-03

µ1 4.42E-05 4.79E-05 4.84E-06 µ1h 8.47E-05 8.01E-05 σc 1.78E-03
2.41E-05 2.29E-05 2.18E-06 1.27E-05 1.12E-05 1.25E-04

φ1 0.98235 0.97985 0.99148 φ1h 0.98232 0.98457 0.80466 ρc -0.93106
0.00862 0.08997 0.00247 0.00862 0.00694 0.05614 0.00544

√
ω1 6.80E-05 7.21E-05 1.28E-05 α1h 1.08E-05 1.07E-05 3.86E-05 λ0c -8.50E-08

3.07E-05 2.90E-05 5.93E-06 5.05E-06 4.75E-06 1.60E-05 2.55E-07

β2 -276.48 β2h 169.28 λ1c 0.01007
156.32 58.83 0.00853

η2 0.02844 η2h γ̄c -9.73809
0.033 0.00101

µ2 5.69E-06 µ2h 6.68E-05 δc 0.37390
4.29E-07 9.48E-06 0.00002

φ2 0.81028 φ2h 0.99193
0.06583 0.00227

√
ω2 2.73E-05 α2h 4.11E-06

1.70E-06 1.39E-06

min 46.23 46.77 32.27 min 46.35 52.94 37.74 min 55.65
LR-test 0.54 14.5 LR-test 6.59 15.2
p-value 0.46 0.02 p-value 0.01 0

Panel B

β1 -172.03 -188.43 -387.13 β1h 54.83 51.75 86.09 αc 1.81E-06
74.54 81.01 175.66 21.86 18.96 37.84 9.00E-07

η1 0.00231 0.0062 η1h -0.00177 βc 5.71E-02
0.00135 0.0082 0.00058 1.83E-02

µ1 6.97E-05 6.91E-05 2.55E-05 µ1h 1.02E-04 1.02E-04 σc 3.30E-03
2.47E-05 2.41E-05 1.92E-05 2.58E-05 2.57E-05 7.67E-05

φ1 0.94577 0.95304 0.99204 φ1h 0.9441 0.94536 0.86644 ρc -0.98711
0.01725 0.01592 0.00257 0.01733 0.01706 0.03339 0.00016

√
ω1 1.02E-04 9.93E-05 7.48E-05 α1h 2.41E-05 2.52E-05 2.66E-05 λ0c 1.40E-07

3.90E-05 3.87E-05 3.20E-05 8.74E-06 8.89E-06 1.32E-05 2.76E-07

β2 -3919.86 β2h 59.17 λ1c 0.01679
1910.53 20.77 0.01050

η2 0.0173 η2h γ̄c -10.23020
0.00877 0.00035

µ2 7.50E-07 µ2h 6.74E-05 δc 0.40945
1.77E-07 1.07E-05 0.00000

φ2 0.8702 φ2h 0.99245
0.03584 0.00238

√
ω2 2.87E-06 α2h 6.51E-06

8.81E-07 1.59E-06

min 33.39 33.77 20.95 min 33.31 40.91 26.71 min 43.03
LR-test 0.38 12.82 LR-test 7.59 14.2
p-value 0.54 0.05 p-value 0.01 0
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Table 2: S&P500 Index Option Data
We use Wednesday closing out-of-the-money (OTM) call and put option data from OptionMetrics from January 1, 1996 through
December 31, 2004. F denotes the implied futures price of the S&P500 index, X denotes the strike price and DTM denotes the
number of calendar days to maturity. The average bid-ask spread is reported in dollars.

Moneyness F/X 0.96− 0.96+, 0.98− 0.98+, 1.02− 1.02+, 1.04− 1.04+, 1.06− 1.06+ All

# Contracts 1,162 961 3,294 1,325 951 2,445 10,138
Avg Price 17.41 22.37 30.59 25.55 22.13 17.51 23.69
Avg Implied Vol 19.63 18.71 19.50 21.23 22.22 25.73 21.42
Avg Bid-Ask Spread 1.187 1.378 1.572 1.400 1.298 1.154 1.361

DTM 30− 30+, 60− 60+, 90− 90+, 120− 120+, 150− 150+ All

# Contracts 695 3,476 2,551 1,063 1,332 1,021 10,138
Avg Price 12.11 17.97 24.47 27.51 31.20 35.36 23.69
Avg Implied Vol 20.69 21.04 21.62 21.86 21.75 21.87 21.42
Avg Bid-Ask Spread 0.830 1.184 1.452 1.539 1.588 1.610 1.361

VIX Level 15− 15+, 20− 20+, 25− 25+, 30− 30+, 35− 35+ All

# Contracts 625 2,844 3,873 1,621 781 394 10,138
Avg Price 14.10 16.49 25.22 30.28 29.61 37.10 23.69
Avg Implied Vol 13.83 17.35 21.38 25.26 28.76 33.06 21.42
Avg Bid-Ask Spread 0.958 1.014 1.397 1.694 1.743 2.007 1.361
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Table 3: Estimation Results on S&P500 Index Options: SVS and GARCH Models
We estimate the four SVS and the three GARCH models using option data for the period January 1, 1996 to December 31,
2004. Standard errors, computed using the outer product of the gradient, are indicated in parentheses.

SVS Models

SVS1FC SVS1FU SVS2FC SVS2FU

Parameters Estimate Std Error Estimate Std Error Estimate Std Error Estimate Std Error

β1 -2.468E+3 (1.28E+2) -2.450E+3 (8.02E+1) -1.046E+4 (1.15E+3) -1.847E+4 (2.80E+3)
η1 0.000E+0 -2.325E-1 (1.08E-2) 0.000E+0 1.083E-2 (3.92E-2)
µ1 3.968E-5 (1.55E-6) 8.534E-5 (1.58E-6) 5.566E-6 (6.22E-7) 3.421E-6 (5.13E-7)
φ1 9.879E-1 (2.13E-4) 9.920E-1 (1.59E-4) 9.763E-1 (5.83E-4) 9.770E-1 (7.75E-4)√
ω1 2.315E-5 (8.98E-7) 2.684E-5 (4.96E-7) 3.616E-6 (3.88E-7) 2.097E-6 (3.08E-7)

β2 0.000E+0 -4.025E-1 (7.51E+1)
η2 -1.975E-1 (5.88E-3) -2.018E-1 (5.82E-3)
µ2 2.592E-5 (7.71E-6) 5.275E-5 (3.39E-6)
φ2 9.989E-1 (1.60E-4) 9.982E-1 (1.35E-4)√
ω2 6.672E-5 (4.42E-6) 5.275E-5 (1.49E-6)

Model Properties

Log Likelihood 20,100 21,080 21,851 21,880
IVRMSE 3.557 3.156 2.981 2.970
Ratio to HN 0.914 0.811 0.766 0.763

GARCH Models

HN CHJ CJOW

Parameters Estimate Std Error Estimate Std Error Estimate Std Error

µ1h 1.24E-4 (6.55E-7) 1.178E-4 (9.04E-7) 8.01E-5 (3.34E-6)
φ1h 9.85E-1 (8.97E-5) 0.9857 (1.27E-4) 9.66E-1 (7.22E-4)
α1h 1.81E-6 (5.85E-9) 1.68E-6 (2.04E-8) 2.44E-6 (1.39E-7)
β1h 208.61 (4.62E+0) 238.50 (5.84E+0) 291.60 (1.60E+1)
η1h -2.17E-3 (8.45E-5)

φ2h 9.97E-1 (1.49E-4)
α2h 2.19E-6 (5.67E-8)
β2h 2.22E+1 (2.13E+0)

Model Properties

Log Likelihood 19,158 19,277 21,623
IVRMSE 3.890 3.783 3.000
Ratio to HN 1.000 0.972 0.771
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Table 4: Estimation Results on S&P500 Index Options: SVS and SVJ Models
We estimate the four SVS and four SVJ models using option data for the period January 1, 1996 to December 31, 2004.
Standard errors, computed using the outer product of the gradient, are indicated in parentheses.

SVS Models

SVS1FC SVS1FU SVS2FC SVS2FU

Parameters Estimate Std Error Estimate Std Error Estimate Std Error Estimate Std Error

β1 -1.345E+3 (8.60E+0) -1.994E+3 (2.20E+1) -1.293E+3 (1.63E+1) -1.994E+3 (3.83E+1)
η1 0.000E+0 (0.00E+0) -8.468E-1 (2.12E-2) 0.000E+0 -4.582E-1 (2.93E-2)
µ1 8.778E-5 (1.90E-6) 7.571E-5 (1.09E-6) 9.705E-5 (5.35E-6) 2.161E-6 (6.24E-6)
φ1 9.966E-1 (9.09E-5) 9.954E-1 (8.17E-5) 9.970E-1 (1.56E-4) 9.980E-1 (1.29E-4)√
ω1 1.072E-4 (2.58E-6) 5.008E-5 (9.68E-7) 1.178E-4 (6.63E-6) 1.429E-5 (2.06E-5)

β2 0.000E+0 -1.994E+3 (5.04E+2)
η2 -2.596E+0 (2.08E-1) -9.768E+0 (1.02E+0)
µ2 1.886E-7 (2.41E-8) 1.602E-4 (2.09E-5)
φ2 9.958E-1 (2.83E-3) 9.686E-1 (2.60E-3)√
ω2 1.125E-4 (7.17E-5) 1.217E-5 (3.56E-6)

Model Properties

Log Likelihood 28,062 28,744 28,246 29,068
IVRMSE {1.717} {1.551} {1.617} {1.512}
Ratio to SV {0.979} {0.884} {0.922} {0.862}

Affine Stochastic Volatility/Jump Models

SV SVJ0 SVJ1 SVJ

Parameters Estimate Std Error Estimate Std Error Estimate Std Error Estimate Std Error

αc 8.397E-7 (9.66E-9) 7.943E-7 (9.11E-9) 7.656E-7 (8.18E-9) 6.684E-7 (1.14E-8)
βc 4.338E-3 (6.50E-5) 5.140E-3 (7.66E-5) 6.610E-3 (1.06E-4) 6.037E-3 (1.06E-4)
σc 1.296E-3 (8.10E-6) 1.260E-3 (8.20E-6) 1.237E-3 (8.77E-6) 1.156E-3 (1.07E-5)
ρc -8.698E-1 (4.61E-3) -1.000E+0 (6.97E-3) -6.558E-1 (5.75E-3) -6.753E-1 (6.76E-3)

λ0c 1.883E-5 (2.28E-4) 4.770E-16 (9.66E-15)
λ1c 4.506E-1 (2.49E-5) 4.415E-1 (4.97E-2)
γ̄c 9.655E-1 (3.12E-1) -3.406E+0 (4.37E-1) -6.410E+0 (1.56E+0)
δc 2.684E-1 (9.10E-2) 2.626E-2 (4.75E-2) 3.019E-1 (1.45E-2)

Model Properties

Log Likelihood 27,876 28,012 28,595 28,639
IVRMSE {1.754} {1.697} {1.532} {1.521}
Ratio to SV {1.000} {0.968} {0.873} {0.867}
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Table 5: IVRMSE Option Error by Moneyness, Maturity and VIX Level
We use Wednesday closing out-of-the-money (OTM) call and put option data from OptionMetrics from January 1, 1996 through
December 31, 2004. F denotes the implied futures price of the S&P500 index, X denotes the strike price and DTM denotes the
number of calendar days to maturity. We report IVRMSE from the models estimated in Table 3 by moneyness, maturity and
VIX level.

Moneyness F/X 0.96− 0.96+, 0.98− 0.98+, 1.02− 1.02+, 1.04− 1.04+, 1.06− 1.06+

HN 3.432 3.328 3.275 3.308 3.588 5.539
CHJ 3.483 3.207 3.238 3.253 3.515 5.251
CJOW 2.993 2.628 2.557 2.615 2.746 4.024

SV {2.575} {1.576} {1.075} {1.037} {1.223} {2.420}
SVJ0 {2.375} {1.591} {1.084} {1.027} {1.190} {2.366}
SVJ1 {2.264} {1.513} {1.042} {0.983} {1.127} {1.930}
SVJ {2.249} {1.505} {1.028} {0.962} {1.115} {1.922}

SVS1FC 3.314 {2.584} 3.065 {1.580} 2.923 {1.057} 3.044 {1.015} 3.253 {1.195} 5.044 {2.299}
SVS1FU 3.609 {2.458} 2.675 {1.414} 2.720 {0.975} 2.913 {0.958} 3.096 {1.113} 3.813 {1.937}
SVS2FC 3.658 {2.290} 2.551 {1.513} 2.492 {1.034} 2.620 {1.035} 2.802 {1.237} 3.602 {2.195}
SVS2FU 3.633 {2.417} 2.542 {1.302} 2.491 {0.972} 2.617 {0.934} 2.800 {1.070} 3.581 {1.881}

DTM 30− 30+, 60− 60+, 90− 90+, 120− 120+, 150− 150+

HN 4.152 3.854 3.846 3.638 3.931 4.093
CHJ 3.989 3.697 3.732 3.590 3.910 4.036
CJOW 3.664 3.064 2.811 2.670 2.944 3.089

SV {2.553} {1.795} {1.454} {1.486} {1.783} {1.836}
SVJ0 {2.505} {1.740} {1.332} {1.482} {1.761} {1.797}
SVJ1 {2.079} {1.565} {1.188} {1.357} {1.668} {1.709}
SVJ {2.078} {1.548} {1.184} {1.354} {1.657} {1.688}

SVS1FC 4.049 {2.485} 3.570 {1.747} 3.427 {1.423} 3.236 {1.453} 3.556 {1.763} 3.739 {1.820}
SVS1FU 3.143 {1.998} 3.200 {1.580} 3.075 {1.273} 2.802 {1.366} 3.328 {1.685} 3.331 {1.717}
SVS2FC 3.282 {2.177} 3.090 {1.680} 2.878 {1.300} 2.619 {1.443} 2.937 {1.663} 3.028 {1.746}
SVS2FU 3.260 {2.001} 3.073 {1.612} 2.856 {1.226} 2.607 {1.264} 2.957 {1.568} 3.035 {1.578}

VIX Level 15− 15+, 20− 20+, 25− 25+, 30− 30+, 35− 35+

HN 4.489 3.130 3.280 4.314 5.199 7.131
CHJ 4.309 2.887 3.177 4.188 5.216 7.300
CJOW 2.855 2.430 2.814 3.073 4.085 5.119

SV {1.885} {1.551} {1.574} {1.803} {2.508} {2.452}
SVJ0 {1.863} {1.511} {1.498} {1.806} {2.351} {2.395}
SVJ1 {1.725} {1.401} {1.341} {1.575} {2.140} {2.138}
SVJ {1.654} {1.355} {1.350} {1.579} {2.144} {2.151}

SVS1FC 3.482 {1.898} 2.872 {1.573} 3.400 {1.511} 4.044 {1.703} 4.537 {2.468} 4.998 {2.408}
SVS1FU 3.251 {1.697} 2.326 {1.401} 2.877 {1.352} 3.399 {1.523} 4.497 {2.306} 5.617 {2.263}
SVS2FC 2.897 {1.832} 2.274 {1.469} 2.683 {1.417} 3.118 {1.655} 4.391 {2.201} 5.390 {2.404}
SVS2FU 2.963 {1.334} 2.269 {1.278} 2.655 {1.304} 3.080 {1.500} 4.344 {2.371} 5.492 {2.661}
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