Downside Risks and the Cross-Section of Asset Returns®

Adam Farago Roméo Tédongap
University of Gothenburg ESSEC Business School

February 28, 2017

Abstract

In an intertemporal equilibrium asset pricing model featuring disappointment aversion
and changing macroeconomic uncertainty, we show that besides the market return and
market volatility, three disappointment-related factors are also priced: a downstate fac-
tor, a market downside factor, and a volatility downside factor. We find that expected
returns on various asset classes reflect premiums for bearing undesirable exposures to
these factors. The signs of estimated risk premiums are consistent with the theoretical
predictions. Our most general, five-factor model is very successful in jointly pricing
stock, option, and currency portfolios, and provides considerable improvement over

nested specifications previously discussed in the literature.
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1. Introduction

Downside risk refers to the risk of an asset or portfolio in case of an adverse economic
scenario. Upside uncertainty is the analogue if the scenario is favorable. The asymmetric
treatment of downside risk versus upside uncertainty by investors has long been accepted
among practitioners and academic researchers (see, e.g., Roy, 1952; Markowitz, 1959), and
has led to the development of new concepts in asset pricing and risk management, like the
value-at-risk and the expected shortfall. Theories of rational behavior have been developed,
where investors place greater weights on adverse market conditions in their utility functions.
These include the lower-partial moment framework of Bawa and Lindenberg (1977), the loss
aversion of Kahneman and Tversky (1979) in their prospect theory, and the disappointment
aversion of Gul (1991), which has been generalized by Routledge and Zin (2010). These
theories suggest priced downside risks in the capital market equilibrium.

We derive and test the cross-sectional predictions of a consumption-based asset pricing
model where the representative investor has generalized disappointment aversion (GDA)
preferences and macroeconomic uncertainty is time-varying. In a setting without disap-
pointment aversion, two factors are priced in the cross-section: the market return (ry) and
changes in market volatility (Ac3,). That is, investors require two premiums to invest in an
asset. The first one is a compensation for covariation with the market return, Cov (R¢, rw ),
which is line with the prediction of the CAPM. The second premium is a compensation for
covariation with changes in market volatility, Cov (R¢, AcZ,). It has been shown by previous
empirical studies that volatility risk is priced in the cross-section (see, e.g., Ang et al., 2006b;
Adrian and Rosenberg, 2008).

Our main theoretical contribution is to show that when disappointment aversion is added

to the framework, investors require three additional premiums as compensation for exposures



to disappointment-related risk factors. The first premium is a compensation for the covari-
ance with the downstate factor, Cov (RS, I (D)). The downstate factor, I (D), takes the
value 1 if disappointment sets in and 0 otherwise. The model suggests that disappointment
(D) may set in due to two reasons: a sufficiently large fall in market return or rise in market
volatility. The second premium is a compensation for the covariance with the interaction
of the market return and the downstate factor, Cov (R, rw I (D)). This factor represents
movements of the market return in the downstate and we refer to it as the market down-
side factor. The third premium is a compensation for the covariance with the interaction
of changes in market volatility and the downstate factor, Cov (R$, Ac,I (D)). This factor
represents changes in market volatility in the downstate and we refer to it as the volatility
downside factor.

In the general case, our setting thus leads to a five-factor model. Although there are five
factors in the model, only two time series, the market return (ry ) and changes in market
volatility (Ac3,) are needed to construct these factors: the downstate factor is constructed
as a function of these two series, and the two downside factors are simply interactions with
the downstate factor. We also show that if the representative investor has infinite elasticity
of intertemporal substitution, then market volatility has no role in the model, and the
disappointing event reduces to a fall of the market return below a reference threshold. This
special case corresponds to a three-factor model with the market, the downstate, and the
market downside factors.

The cross-sectional implications of downside risk have already been studied, most notably,
by Ang et al. (2006a) and Lettau et al. (2014). Our three-factor model nests the models
from both of these studies, with different restrictions on the premium corresponding to the
downstate factor. We explicitly derive these restrictions and confront them with the data.

Our results suggest that the restrictions imposed by the downside risk models of Ang et al.



(2006a) and Lettau et al. (2014) are not supported empirically. Therefore, our three-factor
model provides considerable improvement in explaining the cross-section of different asset
returns, even though all three models use exactly the same information.

The more general five-factor model emphasizes the role of volatility in understanding
downside risks. To our knowledge, little or no attention has been paid to volatility downside
risk in the literature. We argue that volatility downside risk is also an important factor
in explaining the cross-section of asset returns, as the five-factor model provides further
improvement compared to the three-factor model.

We use the generalized method of moments (GMM) to empirically investigate the perfor-
mance of our three- and five-factor models. Our benchmark test assets are various portfolios
formed from US stocks, index option portfolios sorted on type, maturity, and moneyness, and
currency portfolios sorted on their respective interest rates. These portfolios exhibit large
heterogeneity in their average returns, and thus are ideal for cross-sectional asset pricing
tests. The main empirical results of the paper relate to the pricing of the disappointment-
related risk factors.

All the disappointment-related factors have significant risk premiums and the signs on
the risk prices are in line with the theoretical predictions. In terms of pricing errors, when
tested on all asset classes jointly, our three-factor model with a root-mean-squared-pricing
error (RMSPE) of 20 basis points (bps) per month provides a significant improvement over
the CAPM with a RMSPE of 50bps. The corresponding pricing errors of the downside risk
models of Ang et al. (2006a) (28bps) and Lettau et al. (2014) (33bps) are considerably higher
than that of the three-factor model. Our five-factor model, with a RMSPE of 17bps, largely
outperforms a two-factor model with market return and changes in market volatility with
a RMSPE of 27bps. Moreover, the five-factor GDA model also outperforms the four-factor

model of Carhart (1997) on all asset classes except for stock portfolios. Also, the GDA model



has the benefit of being motivated by dynamic consumption-based equilibrium asset pricing
and behavioral decision theories, rather than being motivated by asset pricing anomalies
themselves. These findings suggest the importance of disappointment-related risk in the
cross-section of asset returns. Our results are robust to using additional asset classes and
test portfolios, to alternative specifications of the disappointing event, and to alternative
measures of market volatility.

This paper contributes to the developing literature that attempts to provide empirical
support for the recent generalization by Routledge and Zin (2010) of the axiomatic dis-
appointment aversion framework of Gul (1991). In the literature, GDA preferences have
appeared in consumption-based equilibrium models mainly with the goal of explaining the
time series behavior of the aggregate stock market, and rarely in cross-sectional asset pricing
studies.! One exception is Delikouras (forthcoming), who also studies the cross-sectional im-
plications of a consumption-based model with disappointment aversion preferences. There
are several differences between our study and that of Delikouras (forthcoming). First, he
uses annual and quarterly consumption data. In contrast, we substitute out consumption in
a way similar to Campbell (1993), and rely on the market return. We can then avoid poten-
tial measurement problems in consumption data (of the types advocated, for example, by
Wilcox, 1992), or delayed responses of consumption to financial market news (as discussed,
for example, by Parker and Julliard, 2005), and test the model at the monthly frequency
using market return data. Second, he uses the original version of disappointment aversion
as introduced by Gul (1991), while we use the generalized version of Routledge and Zin

(2010). Our results, when considering different disappointment thresholds, suggest that the

IFor instance, Bonomo et al. (2011) show that persistent shocks to consumption volatility are sufficient
when coupled with GDA preferences to produce moments of asset prices and predictability patterns that are
in line with the data. Schreindorfer (2014) aims at explaining properties of index option prices, equity returns,
variance, and the risk-free rate using the GDA model and a heteroscedastic random walk for consumption
with the multifractal process of Calvet and Fisher (2007). Delikouras (2014) uses the GDA model to explain
the credit spread puzzle.



generalized version is more appropriate in a representative agent setting. Third, Delikouras
(forthcoming) assumes constant volatility of aggregate consumption, while our setting also
allows for time-varying macroeconomic uncertainty. This feature is supported empirically
(see for example Bansal et al., 2005) and it gives rise to the volatility related premiums in
our cross-sectional model. Finally, since we derive the cross-sectional implications in the
form of a factor model and rely on market return rather than consumption, our results are
directly comparable to recent cross-sectional studies on downside risks such as Ang et al.
(2006a) and Lettau et al. (2014).

The remainder of this paper is organized as follows. In Section 2, we present the theo-
retical setup from which we derive the implied cross-sectional model. Section 3 contains the
empirical analysis with several robustness checks. Section 4 concludes, while the Appendix
contains the description of the data sources and some technical derivations. An Online

Appendix contains additional details that are omitted from the main text for brevity.

2. Theoretical motivation

We consider an economy where the representative investor has recursive utility as in Epstein

and Zin (1989) and Weil (1989)

1
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with ¢t = 1,2, ..., and where 0 < § < 1 is the parameter of time preference and ¢ > 0 is the
elasticity of intertemporal substitution. The lifetime utility at ¢ — 1, V,_q, is a function of
the period’s consumption, C;_1, and the certainty equivalent of next period’s lifetime utility,

Ri—1 (V;). Routledge and Zin (2010) embed generalized disappointment aversion (GDA) into



this framework by assuming that the certainty equivalent R;_; is implicitly defined by

U(Ri-1) = Eva [U (V)] = B [(U (KRy1) = U (V) I (Vi < 6Ri1)] (2)

where F; [-] denotes the expectation conditional on information up to time ¢. The utility

function, U, is defined as

1
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where the parameter v > 0 is the coefficient of relative risk aversion. When ¢ is equal
to zero, Ry_1 reduces to expected utility (EU) preferences and V;_; represents the Epstein
and Zin (1989) recursive utility. GDA preferences are a two-parameter extension of the EU
framework. When ¢ > 0, outcomes lower than xR;_; receive an extra weight, decreasing the
certainty equivalent. The larger weight given to these bad outcomes implies an aversion to
losses. The parameter ¢ > 0 is interpreted as the degree of disappointment aversion, while
the parameter 0 < k < 1 is the percentage of the certainty equivalent such that outcomes
below it are considered disappointing. The special case k = 1 corresponds the original
disappointment aversion preferences of Gul (1991).

The investor maximizes the lifetime utility subject to the budget constraint
Wi = (Wi1 — Ci1) Ry (4)

where W;_y is the wealth in period ¢t — 1 and Ry is the simple gross return on wealth, which
we refer to as the market return. Following Hansen et al. (2007), Routledge and Zin (2010),

and Bonomo et al. (2011), the stochastic discount factor (SDF) between periods ¢t — 1 and ¢



in the model with generalized disappointment aversion is

14+/¢1(D
MDY = My_qy ( () ) ; (5)
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where I (-) denotes the indicator function taking the value 1 if the condition is met and 0

otherwise, and

1
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where M;_;,; is the SDF without disappointment aversion (¢ = 0), and D; denotes the

disappointing event. The logarithm of M;_;, and D; may be written as

1
InM; 1 =Ind —yAc — (’y — $> Azy;  and Dy = {Ac¢; + Azyy < Ink}, (7)

where A¢; = In ( thjl) and Azy; = In (%) —1In (%) represent the change in the log
consumption level (or consumption growth) and the change in the log welfare valuation ratio
(or welfare valuation ratio growth), respectively.

For every asset i, optimal consumption and portfolio choice by the representative investor

induces a restriction on the simple excess return R, that is implied by the Euler condition:
By [MET{RG] =0 (8)

In the special case when ¢ = 0 and v = 1/4, the moment condition (8) is readily testable by
GMM using actual data on aggregate consumption growth and asset returns. Earlier results
for this test of the standard model are presented in Hansen and Singleton (1982, 1983). In the
general case, however, the moment condition (8) is not directly testable by GMM since the

continuation value is not observable from the data. Following the long-run risks asset pricing



literature pioneered by Bansal and Yaron (2004), an assumed endowment dynamics can be
exploited, together with the utility recursion (1) and the certainty equivalent definition (2),
to express welfare valuation ratios in terms of economic state variables such as aggregate

volatility, which may be measured or estimated from the data.

2.1. Cross-sectional implications

In order to obtain the cross-sectional implications that form the basis of our empirical inves-
tigation, we make two substitutions in the expressions for In M;_;; and D, in (7). First, we
substitute out consumption growth following Epstein and Zin (1989), Hansen et al. (2007)
and Routledge and Zin (2010) who show that in equilibrium, the market return is related to

consumption growth and the welfare valuation ratio growth through?

1
rwe = —Ind + Ac¢; + (1 - E) Azyy . (9)

Second, assuming that aggregate consumption growth is heteroscedastic and unpredictable
as in Bollerslev et al. (2009), Tauchen (2011) and Bonomo et al. (2011), and consistent with
the empirical evidence presented in Beeler and Campbell (2012) among many others, we can
solve for the welfare valuation ratio endogenously and express the welfare valuation ratio
growth, Azy,, in terms of changes in the volatility of the market return, which we refer to
as market volatility.

Making these substitutions, and after some algebraic manipulation, the Euler equation

2The true market return is unobservable and an emprical proxy is later used in asset pricing tests consistent
with the literature. The usual proxy is the return on a stock market index which shall be more volatile than
the true market return since stock market dividends are at least five times more volatile than consumption.
Therefore, properties of a consumption proxy backed out through equation (9) using the stock market index
return may be different from those of the observed consumption.



in (8) may be written as a cross-sectional linear factor model

E R = pwow + ppoip + pwpOiwp + PxTix + PxpOixD (10)
with

ow = Cov (R, rwt)
oip = Cov (R;,, I (Dy))

oiwp = Cov (R, rwel (Dy)) (11)
oix = Cov (th, Aafm)

oixp = Cov (RS, Aoy, I (D))

where 7y, is the log-return on the market and Ac?,, is the change in the variance of the
market return (we are going to refer to this as the volatility factor).®> Equation (10) corre-
sponds to a linear multifactor representation of expected excess returns in the cross-section.
This is a five-factor model which we refer to as GDA5 throughout the rest of the paper. It
states that in addition to the market (ry-) and volatility (Ao3d,,) factors, three additional
factors command a risk premium: the downstate factor I (Dy), the market downside factor
rwil (Dy), and the volatility downside factor Ao, I (Dy).

The covariance risk prices py > 0, pp < 0, pwp > 0, px < 0, and pxp < 0 are functions
of the preference parameters ¢, v, 1, £ and &, as well as functions of the parameters governing
the endowment dynamics. Let us have a detailed look at the signs of the covariance risk

prices. First, as py > 0, investors require a premium for a security that has positive

3Details of the derivation are outlined in the Online Appendix, where we also derive sign restrictions on
the covariance risk prices, the definition of disappointment in (12), and the cross-price restrictions in (13).
We use “W” in subscript to refer to quantities (e.g., risk measures or risk prices) related to the factor ry,.
Similarly, we use “D” to refer to the factor I (D), “WD” for the factor rw I (D), “X” for the factor Ao,
and “XD” for the factor Ao I (D), respectively.



covariance with the market return. This is in line with the CAPM theory of Sharpe (1964)
and Lintner (1965). Second, as px < 0, investors are willing to pay a premium for a
security that has positive covariance with AcZ;,. This is consistent with the existing empirical
literature (see, e.g., Ang et al., 2006b; Adrian and Rosenberg, 2008). The third factor in (10),
I (Dy), indicates periods when the economy is in the disappointing state. We refer to it as the
downstate factor throughout the paper. The associated risk price is pp < 0, showing that
disappointment-averse investors are willing to pay a premium for a security that has a positive
covariance with the downstate indicator. Note that o;p = Prob(Dy) (E [R5, | D] — E[RS]),
i.e., assets with o;,p > 0 are desirable because they have a higher expected return in the
downstate. The fourth factor is ryI (D;), and it represents changes in the market index when
the economy is in the downstate. We refer to it as the market downside factor throughout
the paper. The associated risk price is non-negative, pyp > 0. Investors require a premium
for a security that has positive covariance with ryI (D;), since such an asset tends to have
a negative return when there is a low market return in the downstate. The fifth and final
factor is Ao, I (D), representing changes in market volatility when the economy is in the
downstate. We subsequently refer to it as the volatility downside factor. The associated risk
price is non-positive, pxp < 0. Investors are willing to pay a premium for a security that has
positive covariance with the volatility downside factor. Such an asset tends to have positive
returns when market volatility increases in a downstate.

We also show in the Online Appendix that the disappointing event may be written as
ow 2
D, = {rWt —a—Aoyy, < b} : (12)
ox

where oy, = Std [ry,] and ox = Std [Ac?,,] are the standard deviations of market return and
changes in market volatility, respectively. Similar to the covariance risk prices, the coefficients

a > 0 and b are also functions of the preference parameters and the parameters governing the

10



endowment dynamics. The term (o /ox) Aoy, may be viewed as the return on a volatility
index that has the same standard deviation as the market return. Disappointment occurs
if the return on a portfolio consisting of a long position in the market index and a times a
short position in the volatility index falls below a constant threshold b. In particular, if the
coefficient a is equal to one, the long position in the market index is exactly balanced by the
short position in the volatility index in determining disappointment. As a decreases from
one towards zero, disappointment is more likely to occur due to a fall in the market index
rather than an increase in the volatility index. Note also that the following two non-linear

restrictions apply to the GDA5 model:

Pwp _ PxD

ow
Pxp = —4—PwD -
0x

There are two special cases of the model worth examining. First, if the elasticity of
intertemporal substitution is infinite (v = o0), then a« = 0 and px = pxp = 0. That
is, changes in market volatility disappear from the model. In this case, the cross-sectional
model (10) reduces to a three-factor model with the market, the downstate, and the market
downside factors, and the disappointing event has the simple form D; = {ry; < b}. We refer
to this restricted model as GDA3 throughout the paper. Second, if the representative investor
is not disappointment averse (¢ = 0), then pp = pywp = pxp = 0, i.e., all disappointment-
related related factors disappear from the model. In this case, (10) reduces to a two-factor
model where only market risk and volatility risk are priced.

Equation (10) may ultimately be expressed as a multivariate beta pricing model:

B[R] = ApBir (14)

11



where [;r is the vector containing the multivariate regression coefficients of asset excess

returns onto the factors, and Ag is the vector of factor risk premiums, respectively given by

Bir = Xp'oir and A\p = Sppp. (15)

The vector o;r contains the covariances of the asset excess returns with the priced factors
as shown in (11), the vector pr contains the associated factor risk prices, and X is the
factor covariance matrix. Since the risk premiums in Ag are linear combinations of the risk
prices in pg, the restrictions in (13) can easily be translated into equivalent restrictions on
the A-s. Also note that if the covariance between the market return and changes in market
volatility is negative, then the sign restrictions on the elements of pp discussed earlier in this
section imply the same sign restrictions on the corresponding elements of \p, i.e., Ay > 0,
Ap <0, Awp >0, Ax <0, and Axp < 0. The negative covariance, Cov (ry¢, Ac,,) < 0, is
consistent with the leverage effect postulated by Black (1976) and documented by Christie
(1982) and others, and it is also empirically supported in our data. The model specification

in (14) is the basis of our empirical analysis.

3. Empirical assessment

In this section, we provide an empirical assessment of the GDA3 and GDAS5 models. The
GDAZ3 is a three-factor model with the market, the downstate, and the market downside

factors:

B[R] = MAwBiw + ApBip + AwpBiwo (16)

12



where the disappointing event has the simple form D, = {ry,; < b}. The GDA5 is a five-

factor model containing also the volatility related factors:

E[R}] = AwBiw + ApfBip + AwpBiwp + AxBix + AxpBixp - (17)

Additionally for the GDABS, volatility enters the definition of the disappointing event as
shown in (12), and the two cross-price restrictions in (13) should also be satisfied. The
number of freely estimated A-s decreases to three due to the two cross-price restrictions. For
the GDADb, we also estimate the parameter a, which determines the relative importance of
the market return and changes in volatility in the definition of disappointment. Altogether,
there are four parameters to estimate in case of the GDA5 model. For both models, the
disappointment threshold is set to b = —0.03 for the empirical analysis, but we also consider
other values in the robustness section.

Finally, note that we do not estimate the underlying preference parameters, but instead
we estimate the risk premiums, which are functions of both the preference parameters and
the parameters governing the endowment dynamics. There are several reasons for focusing
on the risk premiums. First, the market return is not observable and we use the return on the
aggregate stock index as a proxy. This proxy is much more volatile, since it is a claim on the
aggregate stock market dividend, whose growth rate is at least five times more volatile than
the aggregate consumption growth rate. So, estimating the underlying preference parame-
ters with this proxy would induce large estimation bias. Second, the preference parameter
estimates would be dependent on the dynamics assumed for the aggregate endowment in the
economy. By estimating the reduced-form risk premiums in the linear beta representations
(16) and (17), the assumed endowment dynamics do not have a direct effect on our results.
Third, estimating the reduced-form risk premiums makes our results comparable to existing

cross-sectional tests of models with downside risks (e.g., Ang et al., 2006a; and Lettau et al.,
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2014).

3.1. Data and estimation method

Following Lewellen et al. (2010), we do not restrict our attention to pricing size/book-to-
market portfolios. Instead, we estimate our models using various sets of stock portfolios,
and also include additional asset classes like index options and currencies. Monthly returns
on several sets of US stock portfolios are from Kenneth French’s data library. Index option
returns are from Constantinides et al. (2013), who construct a panel of leverage-adjusted
(that is, with a targeted market beta of one) S&P 500 index option portfolios. Currency
returns are from Lettau et al. (2014), who use monthly data on 53 currencies to create six
portfolios by sorting them based on their respective interest rates. The detailed description
of the data and sample periods can be found in Appendix A.

The risk-free rate is the one-month US Treasury bill rate from Ibbotson Associates, while
the market return is the value-weighted average return on all CRSP stocks.* Both series
were obtained from Kenneth French’s data library. Empirical tests of the GDA5 model
require a measure of market volatility. Several approaches have been used for measuring
market volatility in cross-sectional asset pricing studies. Ang et al. (2006b) use the VIX,
Adrian and Rosenberg (2008) estimate volatility from a GARCH-type model, while Bandi
et al. (2006) use realized volatility computed from high-frequency index returns. In our
main analysis, we measure monthly volatility as the realized volatility of the daily market
returns during the month. The main advantage of this latter measure is that it is very easy
to construct as it requires only daily market return data. Therefore, it allows us to use
a longer sample period. Nevertheless, we also use alternative measures in our robustness

checks, including the VIX, realized volatility calculated from intra-daily market returns, and

4We closely follow the predictions of the theoretical model by using the log return on the market (ry)
as the market factor and using simple excess returns on the portfolios (Rf,) as the dependent variable.

14



GARCH volatility.
Portfolio betas and factor premiums from (14) are estimated jointly using GMM with

moment conditions as in Cochrane (2000):

(

E[Rf —a; — Fipir] =0 i=1,..,N
E[[R, — a; — Fifir] f;1] = 0 i=1,.,N, j=1.K > (18)
B[R — BirAr] =0 i=1,..,N

\

where Ry, is the excess return on portfolio 7, f;; denotes factor j, F} is the row vector of
all factors in the model, §;r is the vector of factor betas for portfolio i, and Ar is the
vector of factor risk premiums. The first two sets of moment conditions from (18) directly
correspond to the formula for estimating the g-s in (15), while the last set of moment
conditions represents the model in (14). The advantage of using the GMM is that it allows
us to impose the cross-price restrictions in the GDA5 model and that the standard errors
account for the “generated regressors” problem, i.e., the fact that the 8-s are also estimated.®

When estimating the factor risk premiums, we always apply the additional restriction
that the market portfolio should be perfectly priced. This additional restriction reduces the
number of free parameters in all the models by one. As a consequence, there are two free
parameters to estimate for the GDA3, and three free parameters to estimate for the GDAS,
which makes the models more parsimonious. As it can bee seen from (10) and (11), the
return to be explained in our cross-sectional models is in the form of simple excess return

(RS,), while the market factor is the log-return on the market (ry).> Thus, when the test

°It is shown by Cochrane (2000), for example, that the correction due to Shanken (1992) can be recovered
as a special case of the GMM standard errors. During the GMM estimation we use the identity weighting
matrix, and we use the Newey-West estimator with 3 lags for the covariance matrix of the moment conditions.
Delikouras (forthcoming) shows that the GMM estimators are consistent and asymptotically normal even
when the GMM moment conditions include indicator functions as in the case of the GDA models.

6Tt is shown in the Online Appendix that deviating from the theoretical predictions and using RS, instead
of ry+ as the market factor does not change our empirical results considerably.
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asset is the market portfolio, the return to be explained and the market factor are not
exactly the same. Therefore, imposing the restriction that the market is priced perfectly is
not equivalent to setting the market premium equal to the expected excess return on the
market, but it imposes a linear restriction on the A-s. This restriction is discussed in detail
in the Online Appendix. Essentially, we have to pick one of the premiums, whose value is
implied by the other risk premiums through the market restriction. We pick the downstate
premium (Ap) to be imposed for the GDA models, but the risk premium estimates would

be exactly the same if we chose another one instead (e.g., Ay or Ayp).

3.2. Results

Table 1 presents risk premium estimates for the CAPM, GDA3, and GDA5 models using
several sets of US stock portfolios: (i) 25 (5x5) portfolios formed on size and book-to-market,
(i) 25 (5x5) portfolios formed on size and momentum, (iii) 30 portfolios consisting of 10
size, 10 book-to-market, 10 momentum portfolios, (iv) 25 (5x5) portfolios formed on size
and operating profitability, and (v) 25 (5x5) portfolios formed on size and investment.

Panel A corresponds to the CAPM, which also arises as a restricted version of the GDA3S if
the representative agent is not disappointment averse. The value of the market risk premium
is not estimated, but imposed by the restriction that the market portfolio should be perfectly
priced by the model. To make it clear that certain A values are imposed instead of estimated,
we report these values with the superscript ¢ and do not report their standard errors in
Table 1 and in subsequent tables throughout the paper.

Panel B presents the results for the GDA3. In the three middle columns, all risk premiums
have the expected signs: the market (A ) and market downside (A p) factors have a positive

premium, while the downstate factor (Ap) has a negative premium. Also, the estimated
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premiums are statistically significant.” For the size/book-to-market and size/investment
portfolios however, the downstate premium is positive and the market downside premium is
not statistically significant.

Panel C shows the results for the GDAb5. Recall that the GDA5 involves two cross-
price restrictions. We substitute out the volatility related premiums using these restrictions
and estimate the premiums on the rest of the factors. Additionally, the value of Ap is
imposed by the restriction that the market portfolio is perfectly priced, similar to the GDA3.
In all the columns, the signs are as expected both on the estimated and on the implied
premiums: the market (Ay/) and market downside (Ayp) factors have a positive premium,
while the premiums on the downstate (Ap), the volatility (Ax), and the volatility downside
(Axp) factors are negative. The only exception is Ap for the size-investment portfolios. All
estimated risk premiums are statistically significant. In the case of the GDA5, the parameter
a in the definition of the disappointing event (12) is also estimated. The value of a is less
than one in four of the five cases and the typical value is close to 0.5. Recall that an a value
less than one means that the market return has a bigger weight in determining disappointing
states than changes in market volatility.

Table 2 presents risk premium estimates for the same models when index option and
currency portfolios are also used as test assets. Note that if multiple asset classes are included,
each asset class is represented with the same number of portfolios, so that they have similar
importance in the estimation. Panel A of Table 2 presents the CAPM. The market risk
premium, Ay, is positive for all five sets of portfolios. Panel B corresponds to the GDA3. All
risk premiums have the expected signs, and all the estimated risk premiums are statistically

significant. Panel C presents result for the GDA5. Similar to the GDA3, all risk premiums

"Note again, that the value of Ap is not directly estimated, but is imposed by the restriction that the
market portfolio should be perfectly priced.
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have the expected signs, and all the estimated risk premiums are statistically significant.®

To facilitate model comparison, both Table 1 and Table 2 report the root-mean-squared
pricing error (RMSPE) of the models, expressed in basis points (bps) per month, and the
ratio of RMSPE to root-mean-squared returns (in brackets after the RMSPE values). The
GDAS3 provides a better fit than the CAPM for all sets of test assets, and the improvement
is considerable in several cases. For example, the RMSPE reduces from 39 to 24 bps in case
of the size-momentum stock portfolios, reduces from 44 to 12 bps for the option portfolios,
and reduces from 50 to 20 bps when all three asset classes are included in the estimation.
The GDAS5 provides further improvement compared to GDAS3 for all the ten sets of portfolios
presented in Table 1 and Table 2.

Figure 1 shows scatter plots of actual versus predicted returns, corresponding to the
case when all three asset classes are included in the estimation.’ Panel A highlights the
failure of the CAPM to price our test portfolios. Within each asset class, the actual returns
vary considerably, but the CAPM predicts similar returns for all portfolios. Consequently,
portfolios within each asset class line up close to a vertical line. The improvement in fit is
evident when we move from the CAPM to the GDA3 in Panel B, where the portfolios lie
much closer to the 45 degree line. Finally, the portfolios line up almost perfectly along the
45 degree line in Panel C, which corresponds to the GDAb.

In Section A.7 of the Online Appendix, we provide a detailed discussion on why the

8To put the magnitudes of the risk premium estimates into perspective, we compare them to the corre-
sponding values implied by the asset pricing model of Section 2, calibrated as in Bonomo et al. (2011). In
summary, despite the correct signs, estimates of market downside risk premium, volatility risk premium, and
volatility downside risk premium of Tables 1 and 2 are larger than what the calibrated model can actually
replicate. We argue that this is due to potential estimation biases that may come from different sources, in
particular when portfolios are used as test assets, as discussed in Ang et al. (2016), and Gagliardini et al.
(2016). To verify our assertion, we also estimate the factor risk premiums using a large cross-section of
individual stocks as test assets. We find that the risk premium estimates obtained with individual stocks are
close to the calibration-implied values. A detailed description and discussion of these findings can be found
in Section A.8 of the Online Appendix.

9In particular, the scatter plots in the top row of Figure 1 correspond to the last column of Table 2. The
Online Appendix contains scatter plots similar to the ones in Figure 1 for several other sets of portfolios.

18



GDA model is successful in pricing the option portfolios of Constantinides et al. (2013).
We rely on option greeks to study how the sensitivity of the option price to the underlying
price and to volatility varies with option moneyness when disappointment sets in. Portfolios
containing OTM calls have the lowest sensitvity to the price of the underlying, conditional
on disappointment. They are followed by portfolios with I'TM calls, then ITM puts, and
portfolios with OTM puts have the highest sensitivity. When considering the sensitivity
to volatility conditional on disappointment, the ordering is reversed: portfolios containing
OTM puts have the lowest sensitivity and portfolios with OTM calls have the highest.
Since market downside risk carries a positive premium and volatility downside risk carries a
negative premium, these imply that the GDA model predicts the lowest return for the OTM
call portfolios and the highest return for the OTM put portfolios; which is in line with the
data.

Daniel and Moskowitz (2016) argue that momentum profits are linked to the option like
behavior of the momentum strategy. Clarida et al. (2009) show that currency carry trade
strategies resemble the payoff and risk characteristics of FX option strategies. These results,
together with our previous discussion on option portfolios, may explain why the GDA model

is also successful in pricing the momentum equity and currency portfolios.

3.2.1. Disappointing states

Panel A of Figure 2 plots the market return and the NBER recession periods for our longest
sample starting in July 1964 and ending in December 2016. The horizontal line indicates
a 3% drop in the market index. According to the simple definition Dy, = {rw,; < —0.03},
disappointing months are those when the market return is below this line. Out of 630 months
in the sample, 102 are classified as disappointing, giving a 16.2% unconditional probability of

disappointment. There are 90 NBER recession months during this period, out of which 28 are
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classified as disappointing. This implies a 31.1% probability of disappointment conditional on
being in recession, and a 13.7% probability of disappointment conditional on being outside of
recession. There is a clear positive relationship between recessions and disappointing states
as the conditional probability of disappointment more than doubles in recession periods.

Panel B of Figure 2 shows the value of ry; — ai—‘;VAO'%/Vt with a = 0.5 for the same
period. We use a = 0.5 since most of the estimated values in Table 1 and Table 2 are around
this value. The horizontal line is at —0.03, and disappointing states are defined Dg; =
{rWt — O.SZ—V;AJ?,W < —0.03}. The disappointment definitions in Panel A and Panel B are
empirically close to each other. Out of 630 months, 101 are classified as disappointing
according to Dp;, giving a 16.0% unconditional probability of disappointment. There are
only 10 months in the sample that are disappointing according to D 4; but not disappointing
according to Dpy; these are highlighted with the diamond markers in Panel B. At the same
time, there are 9 months that are disappointing according to Dp; but not disappointing
according to D ; these are highlighted with the round markers in Panel B.

The main reason for D 4; and Dpg; being empirically close is that decreasing market return
and increasing market volatility tend to coincide empirically; which is also known as the
leverage effect. That is, even if increasing market volatility is not explicitly included in the
definition, disappointment tend to be accompanied with increasing volatility. In the period
from July 1964 to December 2016, the unconditional correlation between ry; and Ao, is
-0.25 in our sample. Their conditional correlation (conditional on being in the disappointing
state according to D) is even stronger, -0.46. Extreme volatility increases also happen in
disappointing months when disappointment is defined as ry; < —0.03. Nine of the largest
ten Ao, values in our stock sample period are realized in disappointing months (and 16 of
the largest 20).

Finally, Panel C of Figure 2 shows quarterly consumption growth throughout the period,
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and the red circles indicate quarters with two or three disappointing months.!® Out of the
209 quarters in the sample, there are 20 in which at least two out of three months within
the quarter are disappointing. Quarters with multiple disappointing months are associated
with a higher probability of declining consumption. There are 16 quarters with negative
consumption growth and 7 of them have multiple disappointing months. These values imply
that the conditional probability of declining consumption is 35.0% if there are two or more
disappointing months in a given quarter, and only 4.8% if there is at most one disappointing

month.

3.2.2. Risk premium estimates without restrictions

Table 3 shows risk premium estimates for selected sets of test portfolios when we do not im-
pose the restriction that market should be perfectly priced.!* Thus, the downstate premium
is not imposed, but is estimated as a free parameter in Table 3. Panel A and B correspond to
the GDA3 and GDA5 models, respectively. The estimated risk premiums have the expected
signs and their magnitudes are similar to those reported for our benchmark specifications in
Table 1 and Table 2. The A\p estimate is statistically significant in all but one of the cases.
Also note that the model fit is better if we do not impose the restriction on the market
portfolio, as the number of free parameters increases.

The GDAb5 model can also be estimated without imposing any cross-price restrictions
on the risk premiums and assuming that the disappointing event is of the simple form

D, = {rw: < —0.03}. We refer to this specification as the “unrestricted GDA5”. The

10 Aggregate consumption growth is calculated using quarterly data on Personal Consumption Expenditures
(PCE) from the U.S. Bureau of Economic Analysis. Aggregate consumption is defined on a per capita basis
as services plus non-durables. We use seasonally adjusted series and deflate aggregate consumption by the
PCE price index (the base year is 2009). The consumption growth data is available until 2016Q3. The
red circles indicate quarters with two or three disappointing months according to D 4. Note, however, that
exactly the same plot arises if Dp; is used instead.

1Tn order to save space, results for the other five sets of portfolios are presented in the Online Appendix.
Those results lead to very similar conlcusions to the ones presented in Table 3.
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unrestricted GDAb has a couple of advantages compared to our main GDA5 specification.
First, it is easier to estimate because there are no cross-price restrictions to be imposed
and the definition of disappointment is fixed (no a to be estimated). Second, the GDA3
is nested in the unrestricted GDA5, which facilitates a more direct comparison between
the two models. Third, results from the unrestricted GDA5 are also more comparable to
previous studies analyzing downside risk, since those studies also define the downstate in
terms of the market return only. Panel C of Table 3 provides risk premium estimates for
the unrestricted GDA5. All risk premiums are statistically significant and have the expected
signs. Magnitudes of the volatility related risk premiums for the unrestricted GDA5 are
somewhat higher than in the case of our benchmark GDAS specification, but the magnitudes
of the other premiums are reasonably similar. In terms of model fit, the unrestricted GDAS
delivers lower pricing errors than the other two models in Table 3. Thus, the fourth advantage
of the unrestricted GDAJ5 is that it actually provides a better fit than the other two GDA
models.

Despite all its advantages, we do not focus on the unrestricted GDA5 throughout the
paper, as it has one major disadvantage compared to the GDADB: it is less related to the
theoretical predictions from Section 2.1. Lewellen et al. (2010) suggest that when theory

provides predictions for the risk price estimates, these predictions should be taken seriously.

3.2.3. Comparison to alternative models

In this section we compare the fit of the GDA models to alternative models proposed in
previous literature. Table 4 presents results corresponding to four alternative models using
the same five sets of portfolios as in Table 3. Results for the other sets of portfolios are
relegated to the Online Appendix and lead to very similar conclusions to those presented in

Table 4.
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The model in Panel A, labeled as “VOL”, contains only two priced factors: market return
and market volatility. The VOL model can be viewed as a restricted version of the GDA5
that arises if the representative agent is not disappointment averse. The results in Panel A
show that volatility risk carries a negative premium. Pricing errors decrease compared to the
CAPM, but the size of the improvement varies across different asset classes. The RMSPE
barely decreases in case of the stock portfolios, but the improvement is considerable in case
of the option portfolios (from 44 to 14 bps) and when all three asset classes are included
(from 50 to 26 bps). It is more important for the current paper to compare the VOL and
GDA3 models. The GDA3 delivers lower pricing errors than the VOL model for all five
sets of portfolios, and the improvement in fit can be considerable as in the case of the
size/momentum stock portfolios (from 35 to 24 bps) and when all three asset classes are
included (from 26 to 20 bps).

The cross-sectional implications of market downside risk have been previously studied by
Ang et al. (2006a) and Lettau et al. (2014). These authors propose slightly different models
to incorporate the effect of market downside risk. More importantly, it can be shown that our
GDA3 specification nests the models from both of these studies, with different restrictions

on the value of Ap. Ang et al. (2006a) specify the model for expected returns as

E[R) =X"8"+X 57, with
gF = Cov (RS, rwy | Uy)
! Var (rw: | Uy)

_ Cov (R, rwi | D) (19)

d 8 =
o b Var (rw: | D)

where U refers to the upside event, which is the complement of the disappointing event D.

The model in (19) is equivalent to the GDA3 in (16) with

Aw = AT+ A Ap =0, Awp = A~ . (20)
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That is, the model proposed by Ang et al. (2006a) imposes the restriction Ap = 0. On the

other hand, Lettau et al. (2014) propose

E[RG] = Mg+ X (67 — Bi) (21)

where f3; is the CAPM beta and (5, is the same downside beta as in (19). The specification

in (21) is equivalent to the GDA3 in (16) with

)\W = )\ s )\D = 1 » ()\W — )\WD) s )\WD = "}/1)\ + (1 — ’yl) )\7 s (22)
- M
where
Cov (rwl (Dy) , 7 Cov (I (Dy),r
L Colwl @) _ Cov(I(D).rw -
Var (rwy) Var (rwy)

That is, the model proposed by Lettau et al. (2014) imposes A\p = 11271 (Aw — Awp). The
derivation of the above results is shown in Appendix B.

Panels B and C of Table 4 present risk premiums for the model of Ang et al. (2006a)
and Lettau et al. (2014), respectively. The models are estimated using GMM, imposing the
linear restriction on \p during the estimation for both models.!? Note that the restriction
imposed by the model of Ang et al. (2006a) (Ap = 0) is rejected in four out of five cases for
the GDA3 model in Table 3 (where we can assess the statistical significance of Ap), where
Ap is negative and significantly different from zero. Comparing model fit, the GDA3 model

is always associated with lower pricing errors than the model of Ang et al. (2006a), and the

difference can be substantial, as in case of the option portfolios (12 bps for the GDA3 in

12Without the restriction that market portfolio should be priced perfectly, estimating AT and A~ from
(19) using the Fama-MacBeth (1973) procedure and applying the transformations in (20) leads to the same
A values as estimating the GDA3 using GMM with the restriction Ap = 0. Similarly, estimating A and A\~
from (21) using the Fama-MacBeth (1973) procedure and applying the transformations in (22) leads to the
same A values as estimating the GDA3 using GMM with the restriction on Ap from (22). In Panels B and C
of Table 4, we also impose the restriction that market portfolio should be correctly priced.
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Table 2 and 20 bps for the Ang et al., 2006a model in Table 4) and in the case when all
three asset classes are included (20 bps versus 28 bps). The model of Lettau et al. (2014)
imposes a different restriction on Ap, and as it can be seen in Panel C of Table 4, all the
implied Ap values are positive. Since the downstate premium values are typically negative
for the GDA3, this restriction is also not in line with the data. The Lettau et al. (2014)
model provides a poorer fit than the other two models. The only exception is the size/book-
to-market portfolios, where the RMSPE of the Lettau et al. (2014) model is marginally lower
than the RMSPE of the Ang et al. (2006a) model (but not lower than that of the GDA3).
In general, the models proposed by Ang et al. (2006a) and Lettau et al. (2014) impose
restrictions, compared to the GDA3, that are not supported by the data. Panels E and F
in Figure 1 show scatter plots of actual versus predicted returns for the Ang et al. (2006a)
and Lettau et al. (2014) models. These plots provide a visual evidence that the GDA3 has
a better fit than the two nested models.

Panel D of Table 4 corresponds to the four-factor model of Carhart (1997), which is
an important benchmark in the literature. The Carhart (1997) model does a good job in
pricing the size/book-to-market and size/momentum portfolios. This is not surprising, as the
four-factor model is tailor-made to price these stock portfolios correctly. When we consider
other asset classes, the Carhart (1997) model is much less successful. When estimating the
model using option portfolios, the pricing error is twice as much as that of the GDA5 model,
but even more importantly, the estimated risk premiums change considerably compared
to the stock portfolios. In other words, the estimated risk premiums are very different,
when different asset classes are used. Consequently, the Carhart (1997) model performs
badly when estimated using the three asset classes jointly: only the CAPM provides higher
RMSPE values. In general, the four-factor model works well for pricing stock portfolios, but

it is less successful in pricing portfolios from other asset classes. This is also illustrated in
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Panel H of Figure 1. The stock portfolios line up along the 45 degree line, but the portfolios

from other asset classes do not.

3.2.4. Variation in the risk premium estimates across test portfolios

Risk premium estimates for all models vary across different sets of test assets, and it is hard
to tell whether the variation we observe is substantial or not. To address this concern, we
carry out the following exercise: for all the models, we take risk premium estimates from
a given set of test portfolios, and calculate out-of-sample RMSPEs on the other sets of
portfolios using these risk premiums. In other words, we assess the model fit when the same
risk premium estimates are used across different sets of test portfolios. The out-of-sample
RMSPE values are reported in Table 5. The shaded column in all three panels indicates
which set is used for estimating the risk premiums. In Panel A, the A-s correspond to the
case when 30 stock portfolios consisting of 10 size, 10 book-to-market, and 10 momentum
portfolios are used for the estimation. Panel B corresponds to the case when 54 index option
portfolios are used for the estimation of the A-s. In Panel C, A\-s are estimated using 6
size/momentum, 6 option, and 6 currency portfolios.

The picture is very clear when considering sets that do not solely include stock portfolios:
the lowest pricing errors are delivered by the GDA models, regardless of which set of portfolios
is used for estimation. In the last five columns of Table 5, the lowest RMSPE values in all
panels are produced by the GDA models, and the lowest pricing error typically corresponds to
the GDA5. When considering stock-only sets in the first five columns of Table 5, the results
are more mixed. In Panel A, where the A\-s are estimated using stock portfolios only, the
lowest out-of-sample pricing errors are delivered by the Carhart (1997) model. Nevertheless,
the second lowest RMSPE typically corresponds to the GDA5. In Panel B, where the A-s are

estimated using option portfolios only, the lowest out-of-sample pricing errors are typically
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delivered by the GDA models. Note also that the out-of-sample RMSPE values from the
Carhart (1997) model are extremely high in this case. Finally, there are no clear tendencies
for the stock-only sets in Panel C. Altogether, the results in Table 5 show that the GDA
models perform well even if the same risk premiums are used across the different sets of test

portfolios.

3.3. Robustness checks

3.3.1. Additional portfolios as test assets

In this section we add corporate bond, sovereign bond, and commodity futures portfolios as
test assets. Five corporate bond portfolios, sorted annually on their credit spread, are from
Nozawa (2012). Sovereign bond and commodity futures portfolios are from Asness et al.
(2013), who create three value and three momentum portfolios in both asset classes. A more
detailed description of these portfolios and the data sources can be found in Appendix A.
Risk premium estimates for the GDA models are reported in Table 6.2 The results are
robust to the addition of these asset classes. All the risk premiums have the expected signs,
and all the estimated risk premiums are statistically significant. In terms of pricing error,
the GDAS delivers lower RMSPE values than any of the alternative models considered in
the paper.

We also consider the robustness of our results when the same asset classes are used as in
Table 2, but different test portfolios are chosen to represent a given asset class. When stocks
and options are jointly considered, we also use the size/operating-profit and size/investment
portfolios to represent stocks. When stocks, options, and currencies are jointly considered,

we use 10 industry portfolios to represent stocks and also use 6 portfolios provided by Lustig

13The corresponding results for alternative models are in the Online Appendix. Also note that stocks are
represented by the 6 size/book-to-market portfolios in Table 6. Results with the 6 size/momentum portfolios
are in the Online Appendix.
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et al. (2011) to represent currencies. The results, presented in the Online Appendix, show

that the risk premium estimates are robust to the choice of test portfolios.

3.3.2. Changing the disappointment threshold

The disappointment threshold is set to b = —0.03 throughout the paper. As a robustness
check, we consider the thresholds b € {0, —0.015,—0.04}. The results and a more detailed
assessment can be found in the Online Appendix, but we provide a brief summary here for
the GDAS5. The results remain very similar for the lower threshold (b = —0.04). When the
threshold is higher (b = —0.015 or b = 0), the risk premiums, with one exception, also remain
similar to those in our benchmark specification. The exception is the downstate premium, Ap,
which comes closer to zero and can eventually turn into positive as the threshold increases.
That is, disappointing events should be sufficiently out in the left tail so that the downstate
factor commands a negative premium. In terms of model fit, the lowest RMSPE is typically
provided by the models with low disappointment threshold (either b = —0.03 or b = —0.04).

The results on the model fit have implications on the preference specification in our theo-
retical model. Recall that in the generalized disappointment aversion framework, parameter
t determines the level of the disappointment threshold relative to the certainty equivalent.
Our results that the model fit is better when disappointing events are sufficiently out in the

left tail suggest that we should consider k < 1 in a representative agent setup.

3.3.3. Alternative measures of market volatility

We also consider how the risk premiums for the GDA5 change if different measures of market
volatility are used. Our alternative measures are the option-implied volatility index (VIX),
realized volatility calculated from intra-daily market returns, and a model implied volatility

calculated using an EGARCH specification. Details on how these alternative measures are
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calculated and the estimated risk premiums are presented in the Online Appendix. The
conclusions are similar to our benchmark case, where monthly volatility is measured as
realized volatility of the daily market returns during the month. The signs on the risk
premiums are as expected, their magnitudes are similar, and the estimated premiums are

statistically significant. The model fit is also similar across the different volatility measures.

4. Conclusion

This paper provides an analysis of downside risks in asset prices. Our empirical tests are
motivated by the cross-sectional implications of a dynamic consumption-based general equi-
librium model where the representative investor has generalized disappointment aversion
preferences and macroeconomic uncertainty is time-varying. We explicitly characterize the
factors that are valued by an investor in such setting. Besides the market return and mar-
ket volatility, three disappointment-related factors are also priced: a downstate factor, a
market downside factor, and a volatility downside factor. We also show that in addition
to a fall in the market return, downside risk may also be associated with a rise in market
volatility. The empirical tests confirm that these factors are priced in the cross-section of
various asset classes, including stocks, options, currencies, treasury bonds, corporate bonds,
and commodity futures.

The related literature has mainly focused on the time series implications of this general
equilibrium setting, discussing the preference parameter values necessary to match empirical
regularities in equity returns, risk-free rate, variance premium and options. Estimating these
preference parameter values to jointly target both the time series and the cross-section of

asset returns constitutes an interesting avenue for future research.
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A. Data

Return data on US stock portfolios are from Kenneth French’s data library.'* We use various
sets of stock portfolios in our tests. The sample period for the stock portfolios is from July
1964 to December 2016.

Index option returns are from Constantinides et al. (2013).1> They construct a panel of
S&P 500 index option portfolios. The data set contains leverage-adjusted (that is, with a
targeted market beta of one) monthly returns of 54 (2x3x9) option portfolios split across
two types (call and put), three targeted time to maturities (30, 60, or 90 days), and 9 targeted
moneyness levels (10% ITM, 7.5% ITM, 5% ITM, 2.5% ITM, ATM, 2.5% OTM, 5% OTM,
7.5% OTM, and 10% OTM). The option data are available from April 1986 to January 2012.
In estimations when we use only 24 (2x3x4) option portfolios, we use only a subset of the
portfolios corresponding to two types (call and put), three maturities (30, 60, or 90 days),
and 4 moneyness levels (5% ITM, ATM, 5% OTM, and 10% OTM). In cases when we use
only 6 (2x3) option portfolios, these contain short maturity (30 days) options split across
two types (call and put) and three moneyness levels (ATM, 5% OTM, and 10% OTM).

Currency returns are from Lettau et al. (2014), who use monthly data on 53 currencies
to create six portfolios by sorting them in ascending order of their respective interest rates.'6
The sixth (highest interest rate) portfolio is split into two baskets, 6A and 6B, and portfolio
6B has currencies with annualized inflation at least 10% higher than US inflation in the
same month. We follow Lettau et al. (2014) and use the 6A portfolio to obtain our results.
Currency returns are available from January 1974 to March 2010.

Corporate bond portfolios, sorted annually on their credit spread, are from Nozawa

(2012). Five portfolios are obtained by equally weighting the ten portfolios in the benchmark

“http: / /mba.tuck.dartmouth.edu/pages/faculty/ken.french /data_library.html
5Data are from Alexi Savov’s website at http://pages.stern.nyu.edu/asavov/alexisavov/Alexi_Savov.html
6Data are from Michael Weber’s website at http://faculty.chicagobooth.edu/michael.weber
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analysis of Nozawa (2012) into five baskets.!” The corporate bond returns are available from
October 1975 to March 2010.

Sovereign bond portfolios are from Asness et al. (2013) who sort government bond indexes
into three portfolios based on value and three portfolios based on momentum, separately.
We use all six portfolios in our estimation.'® The portfolio returns are available from Jan-
uary 1983 to December 2016.

Commodity futures portfolios are also from Asness et al. (2013) who sort commodity
futures into three portfolios based on value and three portfolios based on momentum, sepa-
rately. We use all six portfolios in our estimation. The portfolio returns are available from
January 1972 to December 2016.

In cases when multiple asset classes are used at the same time, the sample period is

always the longest possible period for which all asset classes have data available.

1"Data are from Michael Weber’s website, from the replication data set connected to Lettau et al. (2014).
18 An updated and extended version of the portfolios used by Asness et al. (2013) is available from the
AQR website at https://www.aqr.com/library/data-sets
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B. The GDA3 and nested models

To calculate betas in the GDA3 model, the following regression is estimated:

R}, = a; + Biwrwe + Binl (Dy) + Biwprwil (Dy) + €i (B.1)

The mechanics of the OLS implies E' [e4] = E [eqrwi] = E [end (D:)] = E [earwil (Dy)] =0,

where ¢;; denotes residuals from the estimation. Then, with the estimated «; and f;-s,

E[R}] = a; + Biw E [rwi| + Bipm + BiwpE [rwe | D (B.2)
E[RSrwi| = o E [rw + iw E [7”12/[”} + BipE [rwi | D] m + BiwpE [7“12% | Dt] ™ (B.3)
E R | Dy = (i + Bip) + (Biw + Biwp) E [rw: | Dy (B.4)

E[Rirw: | D) = (o + Bip) E [rwe | D] + (Biw + Bawp) E [riy, | D] (B.5)

where m = E [I (D;)] is the unconditional probability of disappointment. Also note that the
occurrence of the upside event, the complement of the disappointing event, can be written

as [ (Uy) =1—1(Dy), hence (B.1) can be rewritten as

RY, = o + Biwrwe + Biworwe - [L — I (U)] + Bip [1 — I (Up)] + €t (B.6)

= (o + Bip) + (Biw + Biwp) rwe — Biworwe - I (Uy) — BinI (Uy) + €ir

Again, the mechanics of the OLS, namely E [e4] (Uy)] = E [eurwd (U)] = 0, gives us

E[R|U) = o+ BiwE [rw.|Uy] (B.7)

E[RirwidUy] = E [rwilh] + Biw E [y, | U] (B.8)
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Using (B.4) and (B.5), it can be shown that the market downside beta is

5 = Cov (Bjy, rwi|Dy) _ E[Rjyrw:|Di] — E R |Dy] E [rw:| D]
Y Var (rw Dy) Var (rw|Dy)

= Biw + Biwp

Using (B.7) and (B.8), the upside beta is

Cov (R, rwi|ly)  E[Rrw U] — B[R U] B [rvw U]

g+ _
‘ Var (rw:|U) Var (rw:|U)

= Biw

Finally, using (B.2) and (B.3) it can be shown that

Cov (R, rwt) = BiwVar (rwe) + BiwpCov (rwid (Dy) , rwe) + BipCov (I (Dy) , rw) -

Hence, the CAPM beta is

_ Cov (RS, rwy)

B; Cov (rwid (Dy) , rwi) Cov (I (Dy) ,rwe)

Var (rw:) +ip Var (rw:)

-~ -~

=7 =72

Var (rme) = Biw + Biwp

N

Using (B.9) and (B.10), the model in (19) can be written as

E[RG] = N3+ X787 = (A" + A7) Biw + A Bawn -

Using (B.9) and (B.12) the model in (21) can be written as

E[R;] =M+ X (B — 5)

=Miw+ (MmA+ 1 =) A7) Biwp + 72 (A—=X7) Bip -
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Table 1: Risk premiums for the CAPM and GDA models using stock portfolios

25 SxBM 25 SxMom 10 S,B,M 25 SxOP 25 SXINV
A. CAPM
A 0.0050° 0.0050" 0.0050" 0.0050" 0.0050"
RMSPE  30.6 [0.40] 39.4 [0.52] 24.9 [0.39] 23.9 [0.33] 29.0 [0.38]
B. GDA3
A 0.0065*** 0.0070*** 0.0065*** 0.0066*** 0.0064***
(0.0016) (0.0008) (0.0008) (0.0017) (0.0013)
Ap 0.0367" -0.2449¢ -0.2022¢ -0.0917" 0.1895¢
AwD 0.0125 0.0256*** 0.0197*** 0.0173* 0.0060
(0.0091) (0.0070) (0.0061) (0.0103) (0.0062)
RMSPE  25.7 [0.34] 23.6 [0.31] 19.8 [0.31] 18.8 [0.26] 22.6 [0.30]
C. GDA5
A 0.0078%** 0.0068*** 0.0064*** 0.0069*** 0.0072%**
(0.0015) (0.0008) (0.0007) (0.0017) (0.0009)
Ap -0.1825¢ -0.1673¢ -0.1717¢ -0.0778¢ 0.1363¢
AWwD 0.0261** 0.0202** 0.0171** 0.0181* 0.0135*
(0.0114) (0.0094) (0.0063) (0.0105) (0.0070)
Ax -0.0021¢ -0.0018¢ -0.0012¢ -0.0024¢ -0.0035¢
AxDp -0.0036¢ -0.0023¢ -0.0017* -0.0026¢ -0.0040¢
a 0.8462 0.4692 0.5335 0.3275 1.2827
(0.5485) (1.0453) (0.7009) (0.5046) (1.1586)
RMSPE  21.4 [0.28] 20.7 [0.27] 18.7 0.29] 17.5 0.24] 16.9 [0.22]

The table shows risk premium estimates for the CAPM and GDA models using five different sets of US stock
portfolios as test assets: (i) 25 (5x5) portfolios formed on size and book-to-market, (i) 25 (5x5) portfolios
formed on size and momentum, (iii) 30 portfolios consisting of 10 size, 10 book-to-market, 10 momentum
portfolios, (iv) 25 (5x5) portfolios formed on size and operating profitability, and (v) 25 (5x5) portfolios
formed on size and investment. The premiums are estimated using GMM. Standard errors are in parenthesis.
Values with the superscript ¢ are imposed by the restriction that the market portfolio should be correctly
priced (and by cross-price restrictions for the GDA5). RMSPE is the root-mean-squared pricing error of the
model in basis points per month and the RMSPE to root-mean-squared returns ratio is reported in brackets.
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Table 2: Risk premiums for the CAPM and GDA models using further asset classes

Stocks 25 SxBM 25 SxMom 6 SxBM 6 SxMom
Options 54 24 24 6 6
Currencies 6 6
A. CAPM
AW 0.0053¢ 0.0053¢ 0.0053¢ 0.0051° 0.0051°
RMSPE 43.8 [0.71] 39.8 [0.57] 42.4 [0.60] 49.4 [0.70] 50.3 [0.71]
B. GDA3
A 0.0068*** 0.0067*** 0.0067*** 0.0066*** 0.0064***
(0.0006) (0.0004) (0.0004) (0.0005) (0.0005)
Ap -0.1672¢ -0.1442¢ -0.1863¢ -0.2294¢ -0.2884¢
AWD 0.0179*** 0.0166*** 0.0178*** 0.0205*** 0.0210***
(0.0059) (0.0056) (0.0041) (0.0053) (0.0044)
RMSPE 11.9 [0.19] 21.5 [0.31] 21.1 [0.30] 20.5 [0.29] 19.8 [0.28]
C. GDA5
A 0.0070*** 0.0070*** 0.0067*** 0.0069*** 0.0065***
(0.0008) (0.0009) (0.0005) (0.0007) (0.0008)
AD -0.2927¢ -0.2250" -0.1974¢ -0.3753¢ -0.3418¢
AW D 0.0228*** 0.0201*** 0.0179*** 0.0265*** 0.0222***
(0.0035) (0.0057) (0.0047) (0.0060) (0.0066)
Ax -0.0006¢ -0.0007¢ -0.0012¢ -0.0001¢ -0.0002¢
AxD -0.0017¢ -0.0020¢ -0.0016¢ -0.0014¢ -0.0007¢
a 0.5820 0.7026 0.3816 0.5259 0.3170
(0.6764) (0.8943) (0.9693) (0.4416) (0.5694)
RMSPE 10.0 [0.16] 19.1 [0.27] 18.8 [0.27] 18.6 [0.26] 17.3 [0.24]

The table shows risk premium estimates for the CAPM and GDA models using various sets of test assets: (i)
54 index option portfolios from Constantinides et al. (2013); (ii) 25 (5x5) size/book-to-market and 24 index
option portfolios; (iii) 25 (5x5) size/momentum and 24 index option portfolios; (iv) 6 size/book-to-market,
6 option, and 6 currency (from Lettau et al. 2014) portfolios; and (v) 6 size/momentum, 6 option, and 6
currency portfolios. The premiums are estimated using GMM. Standard errors are in parenthesis. Values
with the superscript 7 are imposed by the restriction that the market portfolio should be correctly priced
(and by cross-price restrictions for the GDA5). RMSPE is the root-mean-squared pricing error of the model
in basis points per month and the RMSPE to root-mean-squared returns ratio is reported in brackets.
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Table 3: Risk premiums when the perfect market pricing restriction is not imposed

Stocks 25 SxBM 25 SxMom 6 SxBM 6 SxMom
Options 54 6 6
Currencies 6 6
A. GDA3
A\ 0.0069*** 0.0078*** 0.0056* 0.0070** 0.0070**
(0.0022) (0.0021) (0.0032) (0.0032) (0.0034)
AD -0.0473 -0.3519*** -0.2438*** -0.2200** -0.2783***
(0.0896) (0.1247) (0.0606) (0.0940) (0.1015)
AWwD 0.0103 0.0272*** 0.0185*** 0.0204*** 0.0210***
(0.0067) (0.0067) (0.0045) (0.0047) (0.0044)
RMSPE 24.8 [0.33] 21.8 [0.29] 11.6 [0.19] 20.3 [0.29] 19.4 [0.27]
B. GDA5
A 0.0081*** 0.0080*** 0.0059* 0.0079** 0.0078***
(0.0023) (0.0020) (0.0031) (0.0031) (0.0030)
AD -0.2785* -0.3071%* -0.3384*** -0.3741%* -0.3397**
(0.1518) (0.1061) (0.0632) (0.1256) (0.1374)
AW D 0.0262*** 0.0238*** 0.0229*** 0.0273*** 0.0241***
(0.0093) (0.0065) (0.0035) (0.0056) (0.0058)
Ax -0.0012¢ -0.0011* -0.0007* 0.0001° -0.0005
AxD -0.0027¢ -0.0016" -0.0012¢ -0.0016° -0.0013?
a 0.8483** 0.4193 0.4008* 0.6212** 0.4324
(0.3863) (0.3943) (0.2398) (0.2573) (0.3674)
RMSPE 20.6 [0.27] 16.4 [0.22] 9.7 [0.16] 17.8 [0.25] 16.1 [0.23]
C. Unrestricted GDAS5
A 0.0089*** 0.0082*** 0.0086*** 0.0093*** 0.0080***
(0.0023) (0.0021) (0.0028) (0.0032) (0.0029)
AD -0.6088*** -0.2242** -0.3744%* -0.3245%* -0.1945*
(0.1640) (0.1060) (0.0588) (0.1195) (0.1165)
AW D 0.0355"** 0.0205*** 0.0312*** 0.0279*** 0.0157**
(0.0094) (0.0061) (0.0062) (0.0065) (0.0074)
Ax -0.0050*** -0.0025*** -0.0022%** -0.0032 -0.0035*
(0.0011) (0.0008) (0.0006) (0.0020) (0.0020)
AxD -0.0063*** -0.0031*** -0.0045*** -0.0053** -0.0043**
(0.0013) (0.0008) (0.0012) (0.0026) (0.0019)
RMSPE 18.7 0.25] 15.4 [0.20] 9.3 [0.15] 11.1 0.16] 13.1 [0.18]

The table shows risk premium estimates for GDA models using various sets of test portfolios (the same sets
of portfolios as in Table 4) without imposing the restriction that the market portfolio is perfectly priced.
The premiums are estimated using GMM. Standard errors are in parenthesis. Values with the superscript ¢
are imposed by cross-price restrictions for the GDA5. RMSPE is the root-mean-squared pricing error of the
model in basis points per month and the RMSPE to root-mean-squared returns ratio is reported in brackets.
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Table 4:

Risk premiums for alternative models

Stocks 25 SxBM 25 SxMom 6 SxBM 6 SxMom
Options 54 6 6
Currencies 6 6
A. VOL
A 0.0054*** 0.0054*** 0.0058*** 0.0057%* 0.0057***
(0.0005) (0.0005) (0.0001) (0.0002) (0.0002)
Ax -0.0023¢ -0.0024¢ -0.0030° -0.0035° -0.0036"
RMSPE 25.9 [0.34] 35.4 [0.46] 14.2 [0.23] 26.2 [0.37] 26.8 [0.38]
B. Ang et al. (2006a)
A 0.0066*** 0.0070*** 0.0070*** 0.0072%* 0.0072%**
(0.0017) (0.0008) (0.0005) (0.0006) (0.0005)
D 0’ 0’ 0’ 0’ (1
AW D 0.0140° 0.0169¢ 0.0138¢ 0.0175¢ 0.0171¢
RMSPE 25.8 [0.34] 28.3 [0.37] 19.5 [0.31] 25.9 [0.36] 28.4 [0.40]
C. Lettau et al. (2014)
A 0.0065*** 0.0066*** 0.0069*** 0.0073*** 0.0071***
(0.0016) (0.0009) (0.0006) (0.0006) (0.0005)
Ap 0.0557¢ 0.0607¢ 0.0531¢ 0.0896¢ 0.0835¢
AWD 0.0116* 0.0122¢ 0.0112¢ 0.0146° 0.0140¢
RMSPE 25.7 [0.34] 31.0 [0.41] 24.0 [0.39] 30.4 [0.43] 33.3 [0.47]
D. Carhart (1997)
A 0.0054*** 0.0052%** 0.0059*** 0.0054*** 0.0053***
(0.0002) (0.0000) (0.0004) (0.0004) (0.0001)
ASMB 0.0026° 0.0020° 0.0117¢ 0.0023¢ 0.0023¢
NHML 0.004 7%+ 0.0076** 0.0451 0.0041 0.0102
(0.0014) (0.0034) (0.0372) (0.0026) (0.0106)
AW ML 0.0254 0.0073*** 0.0018 0.0168 0.0064
(0.0203) (0.0021) (0.0181) (0.0335) (0.0039)
RMSPE 11.2 [0.15] 13.9 [0.18] 19.4 [0.31] 45.6 [0.64] 44.4 [0.63]

The table shows risk premium estimates for different models using various sets of test assets: (i) 25 (5x5)
size /book-to-market portfolios; (ii) 25 (5x5) size/momentum portfolios; (iii) 54 index option portfolios from
Constantinides et al. (2013); (iv) 6 size/book-to-market, 6 option, and 6 currency (from Lettau et al. 2014)
portfolios; and (v) 6 size/momentum, 6 option, and 6 currency portfolios. The premiums are estimated
using GMM. Standard errors are in parenthesis. Values with the superscript i are imposed by the restriction
that the market portfolio should be correctly priced (and by the restriction in (20) for the model in Panel B
and the restriction in (22) for the model in Panel C). RMSPE is the root-mean-squared pricing error of the
model in basis points per month and the RMSPE to root-mean-squared returns ratio is reported in brackets.
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Table 5: Fit of models when the same risk premiums are used

Stocks SxBM SxMom SBM SxOP SxINV SxBM SxMom SxBM SxMom
Options N v v v v
Currencies v v

A. Stocks only

CAPM 30.6 39.4 24.9 23.9 29.0 43.8 40.5 42.8 49.7 50.5
GDA3 27.2 25.1 19.8 19.4 25.8 12.9 227 22.4 20.8 21.1
GDA5 25.2 21.8 18.7 18.4 24.3 12.9 20.8 20.8 23.0 22.7
Ang et al. 25.8 28.7 21.9 19.1 234 22.3 25.3 27.1 27.8 29.9
Lettau et al. 26.0 31.7 23.0 19.4 23.4 26.7 28.1 29.7 35.0 36.8
VOL 26.1 35.5 23.4 19.1 23.0 20.9 25.8 28.3 33.1 34.0
Carhart 14.0 17.7 9.7 13.9 15.0 39.7 34.3 34.1 46.1 45.8

B. Options only

CAPM 28.7 38.6 24.1 21.8 26.9 43.8 39.8 42.4 48.9 49.9
GDA3 25.7 24.9 18.6 17.9 23.9 11.9 21.7 21.3 21.3 21.6
GDA5 24.6 21.7 18.8 18.1 24.7 10.0 20.2 21.8 19.0 19.0
Ang et al. 25.2 29.3 21.6 18.9 22.7 19.5 244 26.0 27.5 29.5
Lettau et al. 25.3 31.7 23.0 19.4 22.4 24.0 26.7 28.8 31.9 34.1
VOL 26.6 36.2 24.0 20.6 23.0 14.2 244 26.5 26.8 27.8
Carhart 233.4 155.5 157.7  154.6 169.0 19.4 180.9 126.0 149.2 91.8

C. Stocks, options, and currencies

CAPM 29.9 39.1 24.6 23.1 28.2 43.7 40.2 42.6 49.4 50.3
GDA3 28.1 25.5 194 19.9 26.9 14.9 24.3 23.0 20.9 19.8
GDA5 30.3 25.0 20.3 221 29.5 13.1 22.3 22.0 19.2 17.3
Ang et al. 26.0 28.6 21.9 19.8 23.6 24.2 26.8 29.1 25.9 28.4
Lettau et al.  26.1 32.1 23.9 20.7 23.3 28.8 29.3 32.1 30.5 33.3
VOL 27.6 36.5 24.6 21.9 23.9 16.6 26.4 27.8 26.2 26.8
Carhart 32.1 17.0 24.7 17.6 16.2 36.4 414 33.2 49.4 444

The table shows the root mean squared pricing error (reported in basis points per month) of different models
on different sets of portfolios when the same risk premiums are used across all sets. The shaded column
in all three panels indicates which set is used for estimating the risk premiums. In Panel A, 10 size, 10
book-to-market, and 10 momentum portfolios are used to estimate the A-s (third column of Table 1). In
Panel B, 54 index option portfolios are used to estimate the A-s (first column of Table 2 and third column
of Table 4). In Panel C, 6 size/momentum, 6 option, and 6 currency portfolios are used to estimate the A\-s
(last column of Table 2 and Table 4). The test portfolios in the first five columns are the same as in Table 1,
while the test portfolios in the last five columns are the same as in Table 2. Within each column the lowest
RMSPE value is boldfaced and underlined, while the second lowest RMSPE value is boldfaced.
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Table 6: Risk premiums for the GDA models using additional asset classes

Stocks 6 SxBM 6 SxBM 6 SxBM 6 SxBM
Options 6 6 6 6
Currencies §] 6 6 6
Corp. bonds ) )
Sov. bonds §] 6
Commodities 6 6
A. GDA3
A\ 0.0069*** 0.0060*** 0.0068*** 0.0066***
(0.0004) (0.0004) (0.0007) (0.0006)
Ap -0.1546¢ -0.3238! -0.1615¢ -0.1472¢
AWwD 0.0201*** 0.0193*** 0.0198*** 0.0178***
(0.0055) (0.0051) (0.0053) (0.0052)
RMSPE 21.5 [0.34] 26.2 [0.42] 23.2 0.35] 28.1 [0.50]
B. GDA5
A 0.0067*** 0.0063*** 0.0066*** 0.0066™**
(0.0007) (0.0006) (0.0006) (0.0005)
Ap -0.2592¢ -0.3980¢ -0.2009¢ -0.1997¢
AW D 0.0213*** 0.0231*** 0.0193*** 0.0191***
(0.0051) (0.0052) (0.0040) (0.0040)
Ax -0.0010¢ -0.0002¢ -0.0014¢ -0.0015¢
AxD -0.0015¢ -0.0005¢ -0.0017¢ -0.0018¢
a 0.3170 0.3115 0.2545 0.3171
(0.6596) (0.3642) (0.6878) (0.5433)
RMSPE 20.0 [0.31] 23.5 [0.37] 23.1 [0.35] 26.9 [0.47]

The table shows risk premium estimates for the GDA models when we add corporate bond, sovereign bond,
and commodity futures portfolios to our benchmark set of test assets. The benchmark set of test assets
consists of 6 stock portfolios (size/book-to-market), 6 option portfolios, and 6 currency portfolios. The
premiums are estimated using GMM. Standard errors are in parenthesis. Values with the superscript ¢ are
imposed by the restriction that the market portfolio should be correctly priced (and by cross-price restrictions
for the GDAS5). RMSPE is the root-mean-squared pricing error of the model in basis points per month and
the RMSPE to root-mean-squared returns ratio is reported in brackets.
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Figure 2: Disappointing states
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The sample period in all the panels is from July 1964 to December 2016, and the shaded intervals correspond
to NBER recession periods. Panel A shows the monthly market return (rw,) with the horizontal red
line indicating the -3% level. Panel B shows the value of ry; — O.5Z—WAU‘2,W. The diamond markers in
Panel B indicate months that are disappointing according to D4t = {rw+ < —0.03} but not disappointing

according to Dp; = {7'Wt — 0.5%’§A0€W < —0.03}. The round markers in Panel B indicate months that

are disappointing according to Dp; but not disappointing according to D,¢. Panel C shows quarterly
consumption growth and the round markers indicate quarters with two or three disappointing months.
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A.1 Derivation of the cross-sectional implications

In this section we outline the derivation of the cross-sectional implications of the GDA model

and derive the sign restrictions on the risk prices.

A.1.1 Substituting out consumption

The logarithm of M;_ ;. (denoted as m;_1,) and the disappointing event D, are

mi—1+ =1nd —yAc — (7 — %) Azy; and Dy ={Ac¢ + Azyy < Ink} (A1)
where
Cy Vi Ri—1 (V)
Ac, =1 =1 —InC,_ Azyy=In| — ) —In | ————= A2
¢ =In (Ctl) nC;, —InCy;_; and 2y = In (Q) n ( C (A.2)

represent the change in the log consumption level (or consumption growth) and the change
in the log welfare valuation ratio (or welfare valuation ratio growth), respectively.

Following Epstein and Zin (1989), Hansen et al. (2007) and Routledge and Zin (2010)
the log return on wealth is related to consumption growth and the welfare valuation ratio
growth through

1
rwe = —1nd + Ac; + (1 — @) Azyy. (A.3)

Substituting out consumption growth using the above relationship, the equations in (A.1)

can be rewritten as

-1
my_1p = (1 —7)Ind —yry; — (77) Azyy and Dy = {rw + (1/9) Azyy <In(x/d)}.
(A.4)
Note that the market return ry; is not directly observed by the econometrician. The return

to a stock market index is sometimes used to proxy for this return as in Epstein and Zin



(1991). The welfare valuation ratios,

2y =In(V;/Cy)  and  zpy =In(Ry (V1) /CY) (A.5)

are also unobservable. Following Hansen et al. (2008) and Bonomo et al. (2011), we can
exploit the dynamics of aggregate consumption growth and the utility recursion, in addition
to the definition of the certainty equivalent to solve for the unobserved welfare valuation
ratios.

From equation (A.3) it follows that stochastic volatility of aggregate consumption growth
is a sufficient condition for stochastic volatility of the market return. In that case, market
volatility measures time-varying macroeconomic uncertainty. In all what follows, this addi-
tional assumption is coupled with our assumption on investors’ preferences. More specifically,
assume for example that the logarithm of consumption follows a heteroscedastic random walk
as in Bonomo et al. (2011) were the stochastic volatility of consumption growth is an AR(1)
process that can be well-approximated in population by a two-state Markov chain. Then it

can be shown that the welfare valuation ratios satisfy

2ve = Pvo + PveTiy, and zri = Pro + PRoO (A.6)

were 0, = Var; [rwi1] is the conditional variance of the market return, and were the drift
coefficients (¢ and @ro and the loadings ¢y, and ¢, depend on investor’s preference
parameters and on parameters of the consumption growth dynamics. In this case, m;_;,

and the disappointing event in equation (A.4) may be written as

-1
mi—1e = (1 —7)Ind* — yry: — <7T) ngUAa?,Vt

D, = {rWt + (1/%) pveAcsy, <In (m/é*)} ,



where

o 1
Aoty = o5y, — (piagw_l and Inéd* =1Ind+ — (pvo — ¥ro) -

Pve ¢

Our definitions and notations for Azyy and Acd,, presume that zp; ~ zy;, meaning that
VYrRs = @y, This shows that changes in the welfare valuation ratio can empirically be
proxied by changes in a stock market volatility index, where volatility can be estimated by a
generalized autoregressive conditional heteroscedasticity (GARCH) model, can be computed
from high-frequency index returns (realized volatility), or can be measured by the option-
implied volatility (VIX). Disappointment may occur due to a fall in the market return. It
may also occur following a rise in market volatility. This means that the coefficient ¢y, in the
definition of disappointment in (A.7) is negative. In fact, when macroeconomic uncertainty
rises, everything else being equal, the investor is pessimistic about the future. She then
assigns a low valuation to the continuation value and is willing to accept with certainty
a lower welfare to avoid the risk in future consumption. Therefore, the ratio of welfare
valuation to current consumption falls. We take as given that ¢y, < 0 and pr, = Yy,,
and we show in our calibration assessment in Section A.8 of this Online Appendix that this
important theoretical implication of the model holds for a broad range of reasonable values
of preference parameters.

Finally, the disappointing event in equation (A.7) may also be expressed as
D, = {rw: — a(ow/ox) Aoy, < b}, (A.8)

with

a=—(1/Y)pve (ox/ow) and b=In(k/6"), (A.9)

where oy = Std [ry] and ox = Std[Ac?,,] are the respective unconditional volatilities of

the market return and changes in market volatility. Note that ¢y, < 0 implies a > 0.



A.1.2 Cross-sectional implications of GDA preferences

For every asset 7, optimal consumption and portfolio choice by the representative investor

induces a restriction on the simple excess return 2, that is implied by the Euler condition:
Eit [MEPARY) =0, (A10)

where R, = R;; — Ry denotes the excess return, R;; is the simple gross return of asset ¢,

and Ry, denotes the risk-free simple gross return. Using the definition of Mﬁ?’f, equation

(A.10) can be written as

o [Mtl,t (1 n ﬂll—jggEItE?E; (Dt)]) R’i} =0 (A.11)

By [My1, (1 + 41 (D)) RG] =0

By the law of iterated expectations, the above expression also holds unconditionally:
EM_1,(14+0(Dy)) R, =0. (A.12)
Dividing both sides by E [M;_1.], we get
EHi 11+ (D)) R =0, (A.13)
where H;_;, denotes the risk-adjustment density defined by
~Ll+me1— Eme1y]. (A.14)

The log-linear approximation of the nonlinear risk-adjustment density H; ;, as shown in

equation (A.14) is common in the asset pricing literature (see for example Yogo, 2006).



After some algebraic manipulation, (A.13) may be written as

1

BB =15

[COU (thv _Hth,g) + (Cov (R,?t, —Htfl,tf (Dt))] <A15>

where E™[] denotes the expectation under the risk-adjustment density H; ;; and 7 =
E" (I (Dy)] is the risk-adjusted disappointment probability. Equation (A.15) shows that an
asset premium is the sum of two covariances. The first covariance Cov (Rj,, —H;_1.) is the
compensation for regular risks, while the second covariance Cov (R,, —H;_1 I (D;)) reveals
compensation for downside risks conditional upon disappointment.

Using the approximation (A.14) in the pricing relation (A.15), we obtain the cross-

sectional linear factor model from the main text:

E R} = pwoiw + ppoip + pwpOiwp + Dx0ix + DxpOixD (A.16)

where the risk prices are given by:

1
W= e
=L (i (2
Pp = 11 nE THW v Pvoltx
1
=—7/ .
Pwp 11 (rE Y (A.17)

B 1 v—1
pX_1+€7rH b $vo

pxp = ——— (171
XD 1+£7-‘-H ¢ Vo

and where py = E [ry] and ux = E [Ac,| are the means of the market return and changes
in market volatility, respectively.

Let us consider the signs of these risk prices. The consumption-based asset pricing
literature generally agrees on v > 1, which implies py, > 0. Thus, investors require a

premium for a security that has positive covariance with the market return. Maintaining the



assumption that v > 1, it follows from equation (A.17) that px # 0 if and only if ¢ < co.
Thus, compensation for covariance with changes in market volatility is due to imperfect
intertemporal substitution. The representative investor’s risk aversion v > 1 and imperfect
intertemporal substitution ¢ < oo together imply that px; < 0. The next observation is that
pp # 0 if and only if £ # 0, regardless of the values of v and ¥. Compensation for covariance
with the downstate factor I (D;) is exclusively due to disappointment aversion. Since ¢ > 0,
the associated risk price is negative, pp; < 0. Next, pwp # 0 if and only if both v # 0 and
¢ # 0. Both risk aversion and disappointment aversion are needed to explain the required
compensation for covariance with the market downside factor. Risk aversion v > 1 and
disappointment aversion ¢ > 0 together imply that pyp > 0. Finally, pxp # 0 if and only if
v # 1,0 +# 0, and ¢ # oo are all satisfied. Thus, risk aversion, disappointment aversion, and
imperfect intertemporal substitution of the representative investor are all needed to explain
the required compensation for covariance with the volatility downside factor. Recall that we
take vy, < 0 as given , so v > 1, £ > 0, and ¢ < oo together imply that pxp < 0.

There are two cross-price restrictions that are implied by the risk prices in (A.17). First,
it can be easily seen that

Pwp _ Pxp (A.18)

bw bx

Second, using the equations for pyp and pxp, and the definition of a in (A.9), we can write

o —1
PxD = oW PwD - (A.19)
ox 7

If we further assume that the risk aversion, «, of the representative investor is high enough,
then =% ~ 1, and (A.19) simplifies to
v
o

Pxp = —a——pwp . (A.20)
ox

When estimating the GDA5 model in the paper, we use the assumption %1 = 1. We also



considered %1 = 0.75 (which corresponds to 7 = 3), and the (unreported) empirical results

are similar to those in the main text.

A.2 Additional restriction that the market is perfectly priced

When the test asset is the market return (i = W), the GDA5 model can be written as

E Ry, = AwBww + ApBwp + AwpBwwp + AxBwx + AxpBwxop , (A.21)

where the betas are calculated from the regression

RSy, = aw + Bwwrwe + Bwpl (Dr) + Bwworwil (Dy) + Bwx Acty, + Bwxp Aoty I (Dy) +ews

(A.22)
Since the return to be explained (the simple excess return on the market, Rf,) and the
market factor (the log-return on the market, ry,) are not exactly the same, non of the betas
from the above regression will be zero. Hence, for (A.21) to hold, we can impose the following

restriction on the downstate premium:

E €
Ap — [Riv] )\WBWW _ )\WD5WWD B )\Xﬁw_x _ )\Xpﬁwxp (A.23)

BWD BWD BWD 6WD 5WD .

A similar restriction can be derived if we do not pick the downstate premium, but another
one instead (e.g., Ay or A\yp). Also, it is straightforward to derive a similar restriction for
the GDA3 model. When requiring the market to be perfectly priced, we impose the linear
restriction in (A.23) on the downstate premium.

If the market factor is the simple excess return on the market, then (A.22) becomes

we = v +Biw R+ Bipl (Do) +Bivwp R (Do) +Biyx Aoy, +Biyxp Aoy, I (D) +ewe -
(A.24)



It is easy to see that in this case [, = 1 and ay = Byyp = Bivwp = Biwvx = Biwxp = 0.
Hence, (A.21) becomes
E[Ry,] = Aw . (A.25)

That is, imposing the restriction that the market is priced correctly is equivalent to setting
the market premium equal to the expected excess return on the market. Table A.1 shows
the risk premium estimates for the GDA models with the restriction that the market return

is correctly priced when Ry, is used as the market factor.

A.3 Further risk premium estimates

This section provides risk premium estimates from various specifications that are left out
from the main text for brevity.

Table 3 of the main text reports risk premium estimates for the GDA3, GDA5, and unre-
stricted GDA5 models without imposing the restriction that the market portfolio is perfectly
priced using five selected sets of portfolios. Results for the other five sets of portfolios from
the benchmark analysis are presented in Table A.2.

Table 4 of the main text reports risk premium estimates for alternative models using five
selected sets of portfolios from our benchmark analysis. Results for the other five sets of
portfolios from the benchmark analysis are presented in Table A.3.

Table 6 of the main text shows risk premium estimates for the GDA models when corpo-
rate bonds, sovereign bonds, and commodities are added to the set of test assets. Correspond-
ing results for the alternative models considered in the paper are presented in Table A .4.

We also consider the robustness of our results when different test portfolios (compared
to the main text) are chosen to represent a given asset class. The sources of the return
data are described in Appendix A of the main text. There are two additional sets of port-
folios used here: 10 US stock portfolios sorted by industry (10 Ind) from Kenneth French’s

website and six currency portfolios from Lustig et al. (2011). Lustig et al. (2011) use 35



currencies to create six portfolios by sorting them based on their respective interest rates.
The sample period of the original paper is from November 1983 to December 2009, but the
authors provide an updated version of the return data on their website.* We use data up to
December 2013. The risk premium estimates for the GDA3 and GDA5 models are presented
in Table A.5. Conclusions regarding the signs, magnitudes, and statistical significances of
the risk premiums are very similar to those obtained in the main text for the benchmark

test portfolios.

A.4 Different disappointment thresholds

For our main results the disappointment threshold is set to b = —0.03. Table A.6 and Ta-
ble A.7 present risk premium estimates for the GDA models using the values b € {0, —0.015, —0.04}.
In the following discussion, we focus our attention to the results corresponding to the GDA5
in Table A.7.

When b = —0.04, the disappointment threshold becomes lower. The disappointment
probability with D, = {ry; < —0.04} and using the period between 1964 and 2013 is 12.3%,
which is very close to the 16.3% obtained in our benchmark scenario with b = —0.03.
Consequently, the results remain similar: all the estimated risk premiums in Panel C of
Table A.7 are statistically significant and have the expected signs (the single exception is
Ap for the size/book-to-market portfolios, which is not statistically significant, but has the
expected sign). The magnitudes of the premiums are similar to the benchmark scenario. In
terms of model fit, the b = —0.04 specification provides lower RMSPE for the size/book-
to-market and the option portfolios, but the b = —0.03 specification provides lower pricing
errors for the other three portfolios.

As the threshold becomes higher, disappointment is triggered more easily. The disap-
pointment probability with D; = {ry; < b} is 26.7% for b = —0.015, and 38.5% for b = 0.

*Return data on the currency portfolios of Lustig et al. (2011) are obtained from Adrien Verdelhan’s
website at http://web.mit.edu/adrienv/www/Data.html



Risk premium estimates for the GDA5 with these thresholds are reported in Panel A and B
of Table A.7, respectively. The estimated risk premiums, with the exception of A\p, have the
expected sign and the estimates are statistically significant. As the disappointment thresh-
old increases, the premium on the downstate factor becomes insignificant. In some cases
it becomes positive and statistically significant. That is, disappointing events should be
sufficiently out in the left tail so that the downstate factor is priced in the cross-section. In
terms of model fit, the lowest RMSPE is provided by the models with low disappointment
threshold (either b = —0.03 or b = —0.04) for all five sets of portfolios reported in Table A.7.

A.5 Different measures of market volatility

In this section we explore how the estimates for the GDA5 model change if different measures
of market volatility are considered. In the main text, monthly volatility is measured as the

realized volatility of the daily market returns during the month:

N¢

Tiye = Z (rwer — tiwe)” (A.26)

T=1

where 7y - is the daily market return on the 7-th trading day of month ¢, puy is the mean
of the daily market returns in month ¢, and N, is the number of trading days in month .
The alternative measures considered here are the option-implied volatility index (VIX),
realized volatility calculated from intra-daily market returns, and a model implied volatil-
ity calculated using an EGARCH specification. The option-implied monthly volatility is

calculated as

Nt 2
1 VIX
2,VIX t, T
o= () A.27
A (100-\/12) (4.27)

where VIX, ; is the value of the VIX index on the 7-th trading day of month ¢. The daily
value of the VIX index is obtained from CBOE through the WRDS service. Monthly realized

10



volatility from intra-daily market returns is calculated as

T

Ne N
oW =D D Tiver (A-28)

=1 j=1

where ry ;. ; denotes the 10-minute log return series on the 7-th trading day of month ¢ and
N, is the number intra-daily returns within a trading day. We use intra-daily return series
of the S&P 500. The data comes from Olsen Financial Technologies. Finally, in the model
based approach, we fit a model with conditional heteroskedasticity to the daily log market
return series ry-. We consider the EGARCH(1,1,1) by Nelson (1991),

iid

rwr = i+ owrer , with e, ~ N (0,1)
(A.29)
In (o3,) =w+v (’67-’ — \/2/7r> + 0. + ¢In (05,_y)
Then the model-implied monthly volatility is calculated as
Ny
TR Y, (A.30)
T=1

where 6‘2“77 is the estimated daily variance on the 7-th trading day of month ¢. Change in

monthly volatility for all of the above measures is calculated as

Aoy, = Oy — Oyt - (A.31)

Note that the measures are available for different time periods. The VIX data is available
starting from 1986 and our intra-daily return data covers only the period from February 1986
to September 2010. The model implied volatility is available for the entire sample period.
We use the longest possible sample for each specification.

Risk premium estimates are presented in Table A.8. The results are similar across dif-

ferent volatility measures. The signs on the risk premiums are as expected and, apart from

11



a few cases, the estimated risk premiums are statistically significant. It is hard to compare
the model fit across volatility measures, since the panels in Table A.8 correspond to differ-
ent sample periods. However, the RMSPE to root-mean-squared-returns ratios (reported in

brackets) are similar across the different measures.

A.6 Additional scatter plots of results in the main text

Figure A.1 to Figure A.4 show scatter plots of actual versus predicted returns corresponding
to three different sets of portfolios and seven asset pricing models. The models are the same
as in Figure 1 of the main text, and the portfolios are also from the main text (for detailed

description see Appendix A of the main text):
e 6 (3x2) size/book-to-market, 6 option, and 6 currency portfolios in Figure A.1,
e 25 (5x5) size/book-to-market portfolios in Figure A.2,
e 25 (5x5) size/momentum portfolios in Figure A.3, and

e 54 option portfolios from Constantinides et al. (2013) in Figure A.4.

A.7 Option sensitivities to the GDA factors

In the emprical analysis we use the index option portfolios of Constantinides et al. (2013),
who create leverage-adjusted (to have a target CAPM beta of one) portfolios of S&P 500
index options sorted on moneyness. To achieve a target CAPM beta of one, they approximate
the elasticity of the options with respect to the market index with the elasticity implied by
the Black and Scholes (1973) model:

on S()
Yy = — — A.32
W= 55 . (A.32)
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where Sy is the current price of the underlying, m is the current price of the option, and
the partial derivative is calculated from the Black-Scholes formula. Then they create a
hypothetical portfolio that invests 19‘7[,1 dollars in the option and 1 — 19‘7[,1 dollars in the
risk-free rate. In our empirical analysis, we use these hypothetical portfolios. Panel A of
Figure A.5 shows the ¥y values of options with different moneyness (K/Sp) levels.! Note
that the elasticity is ¥y > 1 for call options and ¥y, < —1 for put options. Therefore, a
leverage-adjusted call option portfolio consists of a long position in a fraction of a call and
some investment in the risk-free rate, while a leverage-adjusted put portfolio consists of a
short position in a fraction of a put and more than 100% investment in the risk-free rate.

To assess the options’ sensitivity to the market downside factor, we calculate a measure
inspired by the ¥y, of Constantinides et al. (2013): the sensitivity to changes in the price of
the underlying after a 5% drop in the price of the underlying. That is, we calculate

or &

_Jr A
hwn= 5o (439

5=0.955, 110

Since the index option portfolios we analyze invest 191},1 fraction into the option, the sensitivity
of these portfolios to the market downside factor is 19{1/119;4/1). This value is shown in Panel B
of Figure A.5 for different moneyness levels. OTM put options have the largest sensitivity,
followed by I'TM puts, then ITM calls, and finally OTM calls. For comparison, we show

various betas of the option portfolios in Table A.9. The market downside beta, B;,; =

Cov (th Wt |Dt>

Var(rwa D) easures the portfolio’s sensitivity to the market, given disappointment. Note

that since Yyp is only an approximation based on the Black-Scholes formula, we do not
expect the 191;/-1791/1/@ and f3;;;, values to exactly coincide. However, it is clear that the ordering
of the ;,;, values in Table A.9 is the same as that of the ﬁﬂvlﬁwp values in Panel B of

Figure A.5.

fWe use Sy = 10, T = 1/12 (one month maturity), 30% annual volatility for the underlying, and a
risk-free rate of zero when creating the plots in Figure A.5. The general conclusions do not hinge on these
particular parameter values.
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To assess the options’ sensitivity to volatility, we calculate

oo S=5, 0

where o denotes the volatility of the underlying. Again, the sensitivity of the option portfolios
can be calculated as ¥y, 9x. This value is shown in Panel C of Figure A.5. OTM put options
have the lowest sensitivity, followed by ITM puts, then I'TM calls, and finally OTM calls have

the highest sensitivity. This is in line with the ordering of the volatility betas in Table A.9,
Cov(Rf‘t,Ao‘Q/Vt)

measured as 3;x = Var(ach,)

Finally, to assess the sensitivity of these portfolios to the volatility downside factor, we
calculate the sensitivity to changes in the volatility after the price of the underlying drops

by 5%:
on So

19XD = a—
0 |5=0.955, M0

(A.35)

The 19{1,1?9 xp values are shown in Panel D of Figure A.5. The sensitivities have the same

ordering as in Panel C, which is in line with the ordering of the volatility downside betas in
Cov(Rg,,Ac%,,|Dt)

Table A.9, measured as f;x = — (a0, D.)
ar O'Wt t

A.8 Calibration assessment and estimation with individual stocks

In this section, we further strengthen our main empirical results by showing that they reflect
a rational economic model where agents care about the level and volatility of consumption,
and are aware of downside risk in consumption growth. In other words, in this section, we
rationalize, in the context of a consumption-based reduced-form general equilibrium setting,
the empirical evidence on cross-sectional asset pricing by GDA factors as presented and
discussed in the main text.

We analyze the factor risk premiums, A\; with f € {W, X, D, WD, XD}, generated by a

GDA endowment economy, reasonably calibrated to match the risk-free rate and the aggre-

14



gate stock market behavior. In setting up the calibration, we closely follow Bonomo et al.
(2011). They study an asset pricing model with generalized disappointment aversion and
long-run volatility risk and show that it produces first and second moments of price-dividend
ratios and asset returns as well as return predictability patterns in line with the data. Using
the same endowment dynamics, we focus on the cross-sectional implications by studying the
model-implied disappointment probability and factor risk premiums.

We assume that consumption and equity dividend growth are conditionally normal, un-

predictable, and their conditional variances fluctuate according to a two-state Markov chain:

Acy = p1+ v/ we (81-1)€ct
Adt = U + Va\/ We (St—l)edt 3

(A.36)

where Ac; is the aggregate consumption growth, Ad; is the equity dividend growth, s;_;
indicates the state of the world, and ., and 4 follow a bivariate IID standard normal process
with mean zero and correlation p. The two states of the economy naturally correspond to a
low (L) and a high (H) volatility state.

The endowment dynamics is calibrated at the monthly frequency to match the sample
mean, volatility, and first-order autocorrelation of the real annual US consumption growth
and stock market dividend growth from 1930 to 2012. These moments remain stable if
the data are updated until more recently. Panel A of Table A.10 shows the parameters of
the calibrated endowment process. The state transition probabilities are pr;, = 0.9989 and
pur = 0.9961, and the corresponding long-run probabilities are 78.9% and 21.1% for the
low and high volatility states, respectively. We set the preference parameters similar to the
benchmark calibration of Bonomo et al. (2011). The values are presented in Panel B of
Table A.10. For the GDA3 model, we simply set 1) = oo, everything else being equal.

The first set of results in Panel C shows that our calibration matches well the first and

second moments of consumption and dividend growth in the data. The model-implied an-
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nualized (time-averaged) mean, volatility, and first-order autocorrelation of consumption
growth are respectively 1.80%, 2.07%, and 0.25, and are consistent with the observed annual
values of 1.84%, 2.20%, and 0.48, respectively. The mean, volatility, and first-order auto-
correlation of dividend growth are respectively 1.80%, 13.29%, and 0.25, and the observed
annual values are 1.05%, 13.02%, and 0.11, respectively.

Given these endowment dynamics, we solve for welfare valuation ratios in closed form,
which we combine with consumption growth to derive the endogenous market return and
market variance processes. We refer the reader to Bonomo et al. (2011) for formal derivations.
The second set of results in Panel C of Table A.10 shows that the model generates moments of
asset prices that are consistent with empirical evidence. The level of the risk-free rate, 0.46%
for GDA3 and 0.76% for GDAD, is close to the actual value of 0.57%. The equity premium,
8.06% for GDA3 and 6.61% for GDAD, is slightly larger than the actual value of 5.50%, but
remains comparable to other sample values estimated in the literature, for example 7.25%
in Bonomo et al. (2011). The equity volatility generated by the model, 17.65% for GDA3
and 16.84% for GDAD, is also comparable to the actual value of 20.25%.

As mentioned earlier, the main purpose of this calibration is to study the model implica-
tions for the disappointing event and the GDA factor risk premiums. The model-implied dis-
appointment probability and factor risk premiums are reported in Panel D of Table A.10. The
unconditional model-implied monthly disappointment probability is 17.43% for the GDA3
model and 16.06% for the GDA5 model. These numbers are closely related to their corre-
sponding empirical values of 16.3% and 16.0% respectively, as discussed in Section 3.2.1. of
the main article. Let us focus now on the monthly model-implied factor risk premiums in
Panel D of Table A.10. The market risk premium is equal to Ay = 0.0065 for the GDA3
model, and Ay, = 0.0042 for the GDAJS, while the volatility risk premium is Ax = 0 for the
GDA3, and Ay = —1.38 x 107¢ in the GDA5 model. The market downside risk premium is
Awp = 0.0038 for the GDA3 model, and Ayp = 0.0023 for the GDA5, while the volatility
downside risk premium is Axp = 0 for the GDA3, and Axp = —1.16 x 1076 for the GDA5.
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Finally, the downside risk premium is Ap = —0.3494 for the GDA3, and A\p = —0.3010 for
the GDAD.

The X values from the calibration are to be compared to their data counterparts estimated
in the empirical section of the main text. Our benchmark for comparison are factor risk
premium estimates when all three asset classes (stocks, index options, and currencies) are
included in the estimation. The results are reported in the last two columns of Table 2 in
the main text. The model-implied values of the market risk premium and the downstate risk
premium compare favorably to their data counterparts as they lie within one or two standard
errors around their estimated data counterparts. The remaining model-implied factor risk
premiums are much lower in magnitude than the empirical estimates. However, the estimated
values must be considered with care due to at least two main sources of bias. First, as
discussed in Section 3 of the main article, the estimation uses an empirical proxy of the true
market return with potentially very different properties, especially moments and dynamics.
Second, our estimation in the main article uses standard sets of few portfolios as test assets.
Ang et al. (2016), and Gagliardini et al. (2016) discuss cross-sectional tests using a large cross-
section of individual stocks versus fewer portfolios. They prove theoretically and observe
empirically that using portfolios may destroy important information necessary for obtaining
efficient estimates of the cross-sectional risk premiums, and those risk premium estimates
obtained from a large cross-section of individual stocks can substantially depart from risk
premium estimates on standard sets of portfolios. Their main point is that individual stocks
provide a much larger dispersion in betas, an important prior to cross-sectional tests. To
illustrate the effect of the second point, we carry out an empirical exercise in the following
subsection, where we use individual stocks to estimate factor risk premiums in the GDA

models.
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A.8.1 Risk premium estimates using individual stocks

We follow the methodology used by Ang et al. (2006). In particular, we use the two-stage
cross-sectional regression method of Fama and MacBeth (1973). In the first stage, we use
short-window regressions to estimate the stocks’ sensitivities (betas) to the factors. For every
month ¢t > 12 in the sample, we use twelve months of daily data from month ¢t — 11 to month
t to run a time-series regression for each stock i that has return data over the given period.

For example, in case of the GDA5, we run the regression

RiT = a1 + Biwarw,r + Biwparw, L (D7) + Bipd (D-) + ﬁiX,tAUIZA/,T + ﬁiXD,tAUIQ/v,TI (D;) + €i

(A.37)
where 7 refers to daily observations over the one-year period and t refers to the current
month. The second stage of the Fama-Macbeth procedure corresponds to estimating the

cross-sectional regressions

R, 11 = Biwidwi + BiwpiAwoys + BipsAps + BixiAxi + BixpiAxps + 7]; (A.38)

where the dependent variable is the excess return for stock ¢ in month ¢ + 1. That is the
betas, calculated using data from months ¢t — 11 to ¢, are related to stock returns in the
following moth (¢ + 1). These two steps are repeated for all months in the sample. The
unconditional factor risk premiums are obtained by averaging the lambdas over the sample
period, i.e., 5\f = F [As.] for factor f. Since this approach uses overlapping information
when calculating the betas, we calculate standard errors using the Newey and West (1987)
estimator (with 12 lags).

We use all common stocks traded on the NYSE, AMEX and NASDAQ markets (the data
comes from CRSP). The sample period is from July, 1963 to December, 2013. To measure

daily market volatility used in the first stage regressions, we fit an exponential GARCH to
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the time series of daily market returns. Note that our unreported analysis shows that the
risk premium estimates are robust to using alternatives ways to measure market volatility,
including the options-implied volatility index (VIX), realized volatility from intra-daily mar-
ket returns, or the volatility implied by different GARCH specifications. The disappointing
event in the first-stage regressions is defined as D, = {T’Wﬂ- — a‘;—V;AU%MT < qollﬁ}. Note
that the disappointment threshold, qg 16, is set in each one-year period for the first-stage re-
gressions so that the disappointment probability (i.e., the percentage of disappointing days)
is 16%. We apply this definition to match the 16% unconditional probability of disappoint-
ment from the empirical section of the main text. Also note that results are robust to varying
the probability of disappointment between 15% and 20%.

Table A.11 shows the risk premium estimates for the GDA3 and several GDA5 models.
We use a = 0 for the GDA3 and a € {0,0.5,1} for the GDA5. All the estimated risk
premiums are statistically significant and have the expected signs. Moreover, for all risk

factors, the estimated values are comparable in magnitude to the calibration-implied factor

risk premiums in Panel D of Table A.10.

A.8.2 Sensitivity of the calibration results

We also conduct a sensitivity analysis of our calibration results. We study how the quantities
of interest vary as preference parameters change within reasonable ranges. We set the regular
risk aversion parameter v and GDA threshold parameter x to their base case values (y = 2.5
and kK = § = 0.998) and vary the disappointment aversion parameter ¢ € [1,4] and the
elasticity of intertemporal substitution ¢ € {0.75,1,1.5,00}. Results are shown in Figures
A.6 and A.7. Panels A and B of Figure A.6 show that the model-implied annualized mean
and volatility of the risk-free rate belong to a reasonable range of values used in the asset
pricing literature. The same goes for the mean and volatility of the equity excess return in
Panels G and H.

Panels C and D of Figure A.6 show that the welfare valuation ratios loads negatively on
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market volatility, consistent with the economic intuition that asset values and, consequently,
investor’s wealth and welfare fall in periods of high uncertainty in financial markets. The
model-implied loadings of the welfare valuation ratios onto market volatility are ¢y, and
YR are very close, as the ratio of loadings ¢r./¢v, is close to one. Thus, panels C and D
confirm that ¢z, < 0 and pr, =~ @y, hold for reasonable preference parameter values.
Figure A.7 shows the sensitivity of the factor risk premiums. Again, the lower magnitudes
of model-implied premiums compared to their estimated data counterparts may directly re-
sult from the fact that our empirical proxy of the market return, the return on a stock
market index may have different time series properties than the true (but unobservable)
market return, besides other sources of estimation bias such as the use of standard sets of
fewer portfolios rather than a large cross-section of individual stocks. Factor risk premiums
in Figure A.7 are order of magnitude comparable to estimates based on individual stocks
reported in Table A.11. The signs of the risk premiums are, however, all consistent with
economic intuition and our estimation results in the main text. Finally, Panel F of Fig-
ure A.7 shows the disappointment probability when we vary the disappointment aversion

parameter £.

20



References

Ang, A., Chen, J., Xing, Y., 2006. Downside risk. Review of Financial Studies 19, 1191-1239.

Ang, A., Liu, J., Schwarz, K., 2016. Using stocks or portfolios in tests of factor models,

working Paper.

Black, F., Scholes, M., 1973. The pricing of options and corporate liabilities. Journal of
Political Economy 81, pp. 637-654.

Bonomo, M., Garcia, R., Meddahi, N., Tédongap, R., 2011. Generalized disappointment
aversion, long-run volatility risk and aggregate asset prices. Review of Financial Studies

24, 82-122.

Carhart, M. M., 1997. On persistence in mutual fund performance. Journal of Finance 52,

pp. H7-82.

Constantinides, G. M., Jackwerth, J. C., Savov, A., 2013. The puzzle of index option returns.

Review of Asset Pricing Studies 1, 1-29.

Epstein, L. G., Zin, S. E., 1989. Substitution, risk aversion, and the temporal behavior of

consumption and asset returns: A theoretical framework. Econometrica 57, 937-969.

Epstein, L. G., Zin, S. E.; 1991. Substitution, risk aversion, and the temporal behavior of
consumption and asset returns: An empirical analysis. The Journal of Political Economy

99, 263-286.

Fama, E. F., MacBeth, J. D., 1973. Risk, return, and equilibrium: Empirical tests. Journal

of Political Economy 81, 607-636.

Gagliardini, P., Ossola, E., Scaillet, O., 2016. Time-varying risk premium in large cross-

sectional equidity datasets. Econometrica 84, 985-61046.

21



Hansen, L. P., Heaton, J., Lee, J., Roussanov, N., 2007. Chapter 61 intertemporal substitu-
tion and risk aversion. Elsevier, vol. 6, Part A of Handbook of Econometrics, pp. 3967 —

4056.

Hansen, L. P., Heaton, J. C., Li, N., 2008. Consumption strikes back? measuring long-run

risk. Journal of Political Economy 116, 260-302.

Lettau, M., Maggiori, M., Weber, M., 2014. Conditional risk premia in currency markets

and other asset classes. Journal of Financial Economics 114, 197 — 225.

Lustig, H., Roussanov, N., Verdelhan, A., 2011. Common risk factors in currency markets.

Review of Financial Studies 24, 3731-3777.

Nelson, D. B., 1991. Conditional heteroskedasticity in asset returns: A new approach. Econo-

metrica 59, pp. 347-370.

Newey, W. K., West, K. D., 1987. A simple, positive semi-definite, heteroskedasticity and

autocorrelation consistent covariance matrix. Econometrica 55, pp. 703-708.

Routledge, B. R., Zin, S. E., 2010. Generalized disappointment aversion and asset prices.
Journal of Finance 65, 1303-1332.

Yogo, M., 2006. A consumption-based explanation of expected stock returns. Journal of

Finance 61, 539-580.

22



Table A.1: Risk premiums when the market is priced correctly and Ry, is used

Stocks 25 SxBM 25 SxMom 6 SxBM 6 SxMom
Options 54 6 6
Currencies 6 6
A. GDA3
A 0.0050° 0.0050" 0.0052° 0.0050° 0.0050°
D 0.0726 -0.2790 -0.1596 -0.1217 -0.2274*
(0.1606) (0.3145) (0.3270) (0.1499) (0.1300)
AWD 0.0096 0.0245*** 0.0173* 0.0182***  (.0203***
(0.0102) (0.0079) (0.0098) (0.0060) (0.0044)
RMSPE 27.4[0.36] 22.20.29] 12.3[0.20] 22.4[0.32] 22.2 [0.31]
B. GDA5
A 0.0050° 0.0050° 0.0052° 0.0050° 0.0050°
AD -0.3276**  -0.2206* -0.2351 -0.3039**  -0.2344**
(0.1261) (0.1209) (0.1697) (0.1303) (0.1123)
AWD 0.0256** 0.0198** 0.0196™*  0.0234**  0.0192***
(0.0129) (0.0085) (0.0052) (0.0052) (0.0041)
Ax -0.0011° -0.0013¢ -0.0014¢ -0.0012¢ -0.0013¢
AxD -0.0020¢ -0.0018¢ -0.0018? -0.0018¢ -0.0013¢
a 0.5012 0.4361 0.3826 0.3691 0.1154
(0.5193) (1.1508) (0.8836) (0.5489) (0.6698)
RMSPE 24.0 [0.32] 19.8 [0.26] 11.7 [0.19] 22.1 [0.31] 20.8 [0.29]

The table shows risk premium estimates for the GDA models using various sets of test portfolios (in columns;
the same sets of portfolios as in Table 4 of the main text). The simple excess return on the market (RS )
is used as the market factor as opposed to our benchmark specification, where the log market return (ry)
is used. The premiums are estimated using GMM. Standard errors are in parenthesis. Values with the
superscript ¢ are imposed by the restriction that the market portfolio should be correctly priced (and by
cross-price restrictions for the GDA5). RMSPE is the root-mean-squared pricing error of the model in basis
points per month and the RMSPE to root-mean-squared returns ratio is reported in brackets.
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Table A.2: Risk premiums when the perfect market pricing restriction is not imposed

Stocks 10 S,BM 25 SxOP 25 SxINV 25 SxBM 25 SxMom
Options 24 24
A. GDA3
A\ 0.0072***  0.0069***  0.0067**  0.0067** 0.0068**
(0.0021) (0.0022) (0.0021) (0.0031) (0.0032)
Ap -0.3075"**  -0.2068** 0.0935 -0.1460* -0.1847*
(0.0984) (0.0832) (0.0784) (0.0831) (0.0955)
A\wD 0.0210*  0.0152* 0.0060 0.0167***  0.0178***
(0.0062) (0.0085) (0.0064) (0.0042) (0.0040)
RMSPE 17.4[0.27] 17.4[0.24] 21.9 [0.29] 21.5[0.31] 21.1 [0.30]
B. GDA5
A\ 0.0073**  0.0072***  0.0076***  0.0074™*  0.0076***
(0.0019) (0.0022) (0.0022) (0.0032) (0.0028)
Ap -0.2662**  -0.1826** -0.0427  -0.2266*** -0.1835
(0.1134) (0.0916) (0.0966) (0.0862) (0.1183)
A\wp 0.0192**  0.0187**  0.0181**  0.0202***  0.0180***
(0.0062) (0.0094) (0.0089) (0.0051) (0.0053)
Ax -0.0006* -0.0014* -0.0026° -0.0007" -0.0011*
AxD -0.0012° -0.0019° -0.0033" -0.0020° -0.0019°
a 0.5885 0.5336 0.7776 0.7026 0.6178
(0.4240) (0.5340) (0.6250) (0.4563) (0.4908)
RMSPE 16.3 [0.26] 16.5[0.23] 19.7 [0.26] 18.7 [0.27] 17.8 [0.25]
C. Unrestricted GDA5
A\ 0.0077**  0.0078***  0.0103***  0.0076™* 0.0070**
(0.0020) (0.0021) (0.0023) (0.0032) (0.0030)
Ap -0.2697*  -0.3868***  -0.0376  -0.1883** -0.1162
(0.0929) (0.1186) (0.0892) (0.0937) (0.0964)
Awp 0.0215**  0.0274**  0.0323**  0.0188***  (0.0124**
(0.0057) (0.0096) (0.0088) (0.0064) (0.0056)
Ax -0.0008  -0.0045**  -0.0055***  -0.0029"**  -0.0031***
(0.0008) (0.0013) (0.0009) (0.0011) (0.0011)
AxD -0.0013  -0.0054**  -0.0073***  -0.0040"**  -0.0036***
(0.0008) (0.0016) (0.0011) (0.0015) (0.0010)
RMSPE 16.2 [0.25] 13.6 [0.19] 17.0 [0.22] 16.6 [0.24] 16.5 [0.23]

The table shows risk premium estimates for GDA models using various sets of test portfolios without imposing
the restriction that the market portfolio is perfectly priced. The premiums are estimated using GMM.
Standard errors are in parenthesis. Values with the superscript i are imposed by cross-price restrictions for
the GDA5. RMSPE is the root-mean-squared pricing error of the model in basis points per month and the

RMSPE to root-mean-squared returns ratio is reported in brackets.
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Table A.3: Risk premiums for alternative models

Stocks 10 S,B.M 25 SxOP 25 SxINV 25 SxBM 25 SxMom
Options 24 24
A. VOL
A 0.0053**  0.0054***  0.0055"*  0.0057**  0.0058"**
(0.0005) (0.0005) (0.0005) (0.0002) (0.0001)
Ax -0.0019° -0.0021° -0.0025 -0.0026¢ -0.0028¢
RMSPE 234 [0.37] 19.1[0.27] 22.6 [0.30] 24.1[0.35] 26.4 [0.38]
B. Ang et al. (2006)
A 0.0066™*  0.0065™*  0.0065***  0.0069***  0.0069™**
(0.0007) (0.0019) (0.0015) (0.0005) (0.0004)
A\p 0" 0" 0’ 0¢ 0"
AWwD 0.0142¢ 0.0132° 0.0137" 0.0135° 0.0132°
RMSPE 21.9 [0.34] 19.0 [0.26] 23.4 [0.31] 24.3 [0.35] 26.0 [0.37]
C. Lettau et al. (2014)
A 0.0062**  0.0063**  0.0066***  0.0068***  0.0068"**
(0.0009) (0.0018) (0.0015) (0.0005) (0.0004)
Ap 0.0360¢ 0.0457 0.0577 0.0519¢ 0.0480¢
AWD 0.0095 0.0105 0.0118¢ 0.0111° 0.0107*
RMSPE 23.0 [0.36] 19.3 [0.27] 23.0 [0.30] 26.7 [0.39] 28.7 [0.41]
D. Carhart (1997)
A 0.0051***  0.0054™*  0.0053"*  0.0058***  0.0055***
(0.0000) (0.0002) (0.0001) (0.0004) (0.0001)
ASMB 0.0020° 0.0014° 0.0016° 0.0021° 0.0026°
NHML 0.0033 0.0080**  0.0075™*  0.0045** 0.0061
(0.0025) (0.0033) (0.0018) (0.0023) (0.0070)
AWML 0.0062*** 0.0194 0.0151 0.0289 0.0067*
(0.0023) (0.0171) (0.0117) (0.0330) (0.0039)
RMSPE 9.7 [0.15] 10.8 [0.15] 9.5[0.13] 32.1[0.46] 32.4 [0.46]

The table shows risk premium estimates for different models using various sets of test portfolios. The details
of the test portfolios are provided in Appendix A of the main paper. The premiums are estimated using
GMM. Standard errors are in parenthesis. Values with the superscript ¢ are imposed by the restriction that
the market portfolio should be correctly priced (and by restrictions that are discussed in detail in the main
text for the models in Panel B and Panel C). RMSPE is the root-mean-squared pricing error of the model
in basis points per month and the RMSPE to root-mean-squared returns ratio is reported in brackets.
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Table A.4: Risk premiums with additional asset classes

Stocks 6 SxBM 6 SxBM 6 SxBM 6 SxBM
Options 6 6 6 6
Currencies 6 6 6 6
Corp. bonds 5 5
Sov. bonds 6 6
Commodities 6 6
A. CAPM
A\ 0.0051° 0.0051° 0.0051° 0.0051°
RMSPE 45.5 [0.71] 44.5 [0.71] 48.2[0.73] 42.4 [0.75]
B. Ang et al. (2006)
Aw 0.0073***  0.0068***  0.0069***  0.0066***
(0.0005) (0.0005) (0.0007) (0.0006)
D 0’ 0’ 0 0°
AW D 0.0177 0.0140? 0.0146° 0.0128°
RMSPE 24.1[0.38] 33.2 [0.53] 28.5[0.43] 30.9 [0.55]
C. Lettau et al. (2014)
A\ 0.0073**  0.0066**  0.0066**  0.0064***
(0.0005) (0.0005) (0.0007) (0.0006)
Ap 0.0901° 0.0560? 0.0549° 0.0429°
AWwD 0.0146° 0.0112¢ 0.0111° 0.0099°
RMSPE 27.9 [0.44] 35.8 [0.57] 32.5[0.49] 32.9 [0.58]
D. VOL
A\ 0.0057**  0.0057***  0.0057***  0.0056***
(0.0002) (0.0002) (0.0002) (0.0002)
Ax -0.0035° -0.0034 -0.0034* -0.0033!
RMSPE 26.0 [0.41] 26.9 [0.43] 26.4 [0.40] 26.6 [0.47]
E. Carhart (1997)
Aw 0.0054***  0.0055***  0.0054***  0.0054***
(0.0002) (0.0004) (0.0002) (0.0001)
ASM B 0.0025 0.0020° 0.0024* 0.0022°
AHML 0.0041 0.0045* 0.0044 0.0047
(0.0030) (0.0027) (0.0032) (0.0033)
AWML 0.0158 0.0238 0.0148 0.0168
(0.0159) (0.0295) (0.0167) (0.0121)
RMSPE 41.4 [0.65] 40.7 [0.65] 44.1[0.66] 38.3 [0.68]

26

The table shows risk premium estimates for the GDA models when we add corporate bond, sovereign bond,
and commodity futures portfolios to our benchmark set of test assets. The benchmark set of test assets
consists of 6 stock portfolios (size/book-to-market), 6 option portfolios, and 6 currency portfolios. The
premiums are estimated using GMM. Standard errors are in parenthesis. RMSPE is the root-mean-squared
pricing error of the model in basis points per month and the RMSPE to root-mean-squared returns ratio is
reported in brackets.
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Table A.6: Risk premiums for the GDA3 with alternative disappointment thresholds

Stocks 25 SxBM 25 SxMom 6 SxBM 6 SxMom
Options 54 6 6
Currencies 6 6
A b=0
Aw 0.0063*** 0.0065*** 0.0069*** 0.0073***  0.0071***
(0.0006) (0.0006) (0.0005) (0.0006) (0.0005)
Ap -0.0046° -0.1026" 0.0345! 0.2780° 0.1661°
AWD 0.0144*** 0.0177** 0.0148*** 0.0170***  0.0166***
(0.0047) (0.0041) (0.0037) (0.0040) (0.0033)
RMSPE 25.8 [0.34] 23.2[0.30] 12.6 [0.20] 17.6 [0.25] 22.6 [0.32]
B. b= -0.015
AW 0.0054*** 0.0068*** 0.0069*** 0.0072***  0.0069***
(0.0007) (0.0004) (0.0005) (0.0005) (0.0006)
Ap -0.2547 -0.1276" -0.0899° 0.1276° -0.0202°
AWD 0.0104 0.0205*** 0.0156*** 0.0164***  0.0168***
(0.0093) (0.0048) (0.0052) (0.0043) (0.0032)
RMSPE 25.4 [0.34] 23.5[0.31] 12.6 [0.20] 21.8 [0.31] 23.8 [0.33]
C.b=-0.04
Aw 0.0066*** 0.0071*** 0.0069*** 0.0070***  0.0069***
(0.0016) (0.0007) (0.0005) (0.0006) (0.0004)
Ap 0.1962° -0.2206° -0.2370°  -0.1697°  -0.2096°
AWD 0.0051 0.0256*** 0.0217* 0.0218***  0.0229***
(0.0135) (0.0077) (0.0114) (0.0057) (0.0066)
RMSPE 20.9 [0.28] 25.3[0.33] 11.6 [0.19] 22.6 [0.32] 24.1 [0.34]
The table shows risk premium estimates for the GDA3 model when the disappointing event is defined as
D, = {rw,. <b}. The value of b varies across panels. The test portfolios are the same as in Table 4

of the main text. The premiums are estimated using GMM. Standard errors are in parenthesis. Values
with the superscript ¢ are imposed by the restriction that the market portfolio should be correctly priced.
RMSPE is the root-mean-squared pricing error of the model in basis points per month and the RMSPE to
root-mean-squared returns ratio is reported in brackets.
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Table A.7: Risk premiums for the GDA5 with alternative disappointment thresholds

Stocks 25 SxBM 25 SxMom 6 SxBM 6 SxMom

Options 54 6 6

Currencies 6 6

A b=0

Aw 0.0075*** 0.0064*** 0.0068***  0.0067*** 0.0069***
(0.0015) (0.0004) (0.0006) (0.0008) (0.0005)

AD 0.2182° -0.1639° -0.0214° 0.2496° 0.1304*

AWD 0.0206* 0.0155*** 0.0139*** 0.0121** 0.0147*
(0.0106) (0.0050) (0.0034) (0.0051) (0.0077)

Ax -0.0028¢ -0.0009° -0.0017¢ -0.0031° -0.0024¢

AXD -0.0033¢ -0.0013¢ -0.0018° -0.0029* -0.0026°

a 0.4590 0.3673 0.2338 0.6317 0.2973

(0.7554)  (0.5533)  (1.1975)  (0.8769)  (1.2784)

RMSPE  22.5[0.30] 19.2[0.25] 129 [0.21] 20.5[0.29] 23.2 [0.33]

B. b= —0.015
Aw 0.0076**  0.0069***  0.0069***  0.0071***  0.0069"**
(0.0015)  (0.0007)  (0.0007)  (0.0006)  (0.0004)

Ap -0.1470°  -0.0870°  -0.1235'  0.1086' 0.0519°
Awp 0.0235*  0.0186**  0.0156***  0.0153**  0.0145"**
(0.0139)  (0.0087)  (0.0037)  (0.0071)  (0.0031)

Ax 0.0017°  -0.0019°  -0.0015'  -0.0027°  -0.0023°
AxD -0.0030°  -0.0022°  -0.0019'  -0.0028'  -0.0027°

a 0.6799 0.3451 0.4072 0.1714 0.4094

(0.4869)  (1.0155)  (0.9192)  (0.6534)  (1.7059)

RMSPE 221 [0.29] 20.7 [0.27] 13.0 [0.21] 21.6 [0.30] 24.5 [0.34]

C.b=—-004
Aw 0.0068°*  0.0071***  0.0069***  0.0067***  0.0066"*
(0.0017)  (0.0006)  (0.0009)  (0.0006)  (0.0007)

Ap 0.0388° 20.27200  -0.2940°  -0.2000'  -0.2915'
Awp 0.0131  0.0272"**  0.0231***  0.0210**  0.0237"**
(0.0199)  (0.0080)  (0.0031)  (0.0058)  (0.0079)

Ax -0.0029°  -0.0020°  -0.0006'  -0.0017°  -0.0009°
AxD -0.0029°  -0.0022°  -0.0015'  -0.0017°  -0.0014°

a 0.1288 0.2422 0.5741 0.1025 0.3860

(0.2882)  (0.7454)  (0.7205)  (1.0316)  (0.7472)

RMSPE 23.9[0.32] 21.1]0.28] 9.2[0.15] 21.1[0.30] 21.0 [0.30]
The table shows risk premium estimates for the GDA5 model when the disappointing event is defined as
Dy = yrwi — a‘;—V;AU‘%W < b}. The value of b varies across panels. The test portfolios are the same as in

Table 4 of the main text. The premiums are estimated using GMM. Standard errors are in parenthesis.
Values with the superscript ¢ are not estimated, but are imposed. RMSPE is the root-mean-squared pricing
error of the model in basis points (bps) per month and the RMSPE to root-mean-squared returns ratio is
reported in brackets.

29



Table A.8: Risk premiums for the GDA5 using alternative volatility measures

Stocks 25 SxBM 25 SxMom 6 SxBM 6 SxMom
Options 54 6 6
Currencies 6 6
A. Option implied volatility (VIX)
Aw 0.0081*** 0.0079*** 0.0065***  0.0065***  0.0065***
(0.0009) (0.0008) (0.0014) (0.0011) (0.0009)
AD -0.1071° -0.1310° -0.3226° -0.2698° -0.2470°
AwD 0.0152* 0.0160** 0.0209*** 0.0207* 0.0201**
(0.0083) (0.0076) (0.0063) (0.0111) (0.0089)
Ax -0.0010° -0.0012¢ -0.0005° -0.0008° -0.0009°
AXD -0.0016° -0.0014* -0.0008* -0.0010° -0.0010*
a 1.2625 0.4006 0.4546 0.2778 0.1595
(2.0932) (1.4324) (0.8337) (1.2991) (1.2682)
RMSPE  23.8[0.30] 23.6[0.29] 12.6 [0.20] 21.4[0.30] 20.3 [0.29]
B. Realized volatlity (intra-daily)
Aw 0.0058*** 0.0065*** 0.0063***  0.0067***  0.0064***
(0.0012) (0.0007) (0.0010) (0.0004) (0.0007)
Ap 0.1079° -0.1728¢ -0.2112¢ -0.1944° -0.2820°
AwD 0.0037 0.0170* 0.0177**  0.0194***  0.0211***
(0.0109) (0.0099) (0.0034) (0.0040) (0.0053)
Ax -0.0011° -0.0008° -0.0006° -0.0008° -0.0006°
AxD -0.0010¢ -0.0009* -0.0008* -0.0011° -0.0008*
a 0.9802 0.2201 0.4378 0.4429 0.3235
(2.2929)  (0.6148)  (1.8549)  (1.1562)  (1.1562)
RMSPE  23.7[0.34] 25.0 [0.36] 12.4[0.21] 19.6 [0.28] 18.1 [0.25]
C. Model implied volatility (EGARCH)
Aw 0.0069*** 0.0070*** 0.0068***  0.0066***  0.0065***
(0.0017) (0.0009) (0.0022) (0.0004) (0.0008)
AD -0.0060* -0.1715¢ -0.2701* -0.1978¢ -0.2736*
AW D 0.0155 0.0214*** 0.0206* 0.0196***  0.0212***
(0.0132) (0.0076) (0.0109) (0.0048) (0.0049)
Ax -0.0010° -0.0008° -0.0004° -0.0004" -0.0002°
AxD -0.0012¢ -0.0010* -0.0006* -0.0006* -0.0004*
a 0.8603 0.4252 0.4020 0.2069 0.1105
(0.8198) (0.7559) (2.4298) (1.3322) (0.8260)
RMSPE  20.6 [0.27] 19.7[0.26] 11.4[0.18] 20.5[0.29] 19.3 [0.27]

The table shows risk premium estimates for the GDA5 model when market volatility is measured in different
ways (in panels). The test portfolios are the same as in Table 3 of the main text. The premiums are estimated
using GMM. Standard errors are in parenthesis. Values with the superscript ¢ are not estimated, but are
imposed. RMSPE is the root-mean-squared pricing error of the model in basis points per month and the
RMSPE to root-mean-squared returns ratio is reported in brackets.
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Table A.9: Betas of the option portfolios

Return Betas

B[R] Biw Biw Bix Bix
Call, 5% OTM -3.45 0.64 0.26 0.33 0.71
Call, ATM -1.32 0.75 0.36 -0.25 0.35
Call, 5% ITM 1.13 0.80 0.45 -0.78 -0.03
Put, 5% ITM 5.78 0.92 0.76 -2.64 -1.60
Put, ATM 8.99 0.97 0.88 -3.35 -2.13
Put, 5% OTM 16.02 1.01 0.99 -4.13 -2.76

The table presents retunrs and betas of various index option portfolios. The first col-
umn presents the annual average excess return of the portfolios. The rest of the ta-

ble reports the market beta B,y = m, the market downside beta f;,, =

Var(rwte)
Cov(RE,, D . Cov( R, Ach - .
W, the volatility beta 8;x = W, and the volatility downside beta,

C’ov(th ,AU‘Q,” |Dt)

Bix = Var(Aoh, D) of the portfolios. The disappointing event is Dy = {ry+ < —0.03}.
ar(Aoy, .| Dt
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Table A.10: Model calibration

A. Endowment parameters

1= 0.15%, \/w. (L) = 0.46%, \/w, (H) = 1.32%,
Vg = 6.427 p = 03, PHH = 099617 PLL = 0.9989

B. Preference parameters

0 =0.998, vy =2.5, ¢ =2.33, K = 0.998

C. Endowment and asset pricing moments

Sample GDA3 GDA5
ElAc] (%) 1.84 180  1.80
olAc] (%) 2.20 2.07 2.07
AC1 (Acy) 0.48 0.25  0.25
E[Ad] (%) 1.05 180 1.80
o[Ad) (%) 13.02 1329 13.29
AC1 (Ady) 0.11 0.25  0.25
Corr (Acy, Ady) 0.52 0.30 0.30
Elpd (%) 3.33 272 2.89
olpd] (%) 0.44 020  0.11
Elrf] (%) 0.57 046  0.76
alrg (%) 3.77 0.15 1.55
Elr—r] (%) 550 8.06  6.61
olr—r] (%)  20.25 17.65  16.84

D. Downside event and factor risk premiums

GDA3

(0

a 0.00
b (%) 0.00
Prob (D) (%) 17.43
Aw 0.0065
Ap -0.3494
Awp 0.0038
Ax

Axp

GDA5

1.5

1.38
-0.10
16.09

0.0042
-0.3010
0.0023
-1.38E-6
-1.16E-6

The top panels of the table present the parameter values used for the calibration assesment. Panel A
shows the parameters of the endowment dynamics from (A.36), while Panel B presents the values of the
preference parameters. Panel C presents the model implied mean (E), standard deviation (o), and first
order autocorrelation (AC1) of consumption growth (Ac;) and dividend growth (Ad;), and the first and
second moments of the log price-dividend ratio (pd), log risk-free rate (ry), and excess log equity return
(r — ). The first column presents annualized data counterparts over the period from January 1930 to
December 2012. Finally, Panel D shows the characteristics of the downside event (parameters a and b
from equation (A.4) and the unconditional disappointment probability) and the factor risk premiums

(A-s), as implied by the GDA model.
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Table A.11: Risk premium estimates using individual stocks

GDA3 GDA5 GDA5 GDA5
a=0 a=20 a=0.5 a=1
Aw 0.0054** 0.0051** 0.0051** 0.0052**
(0.0024) (0.0023) (0.0023) (0.0023)
AD -0.2112** -0.1906** -0.3249*  -0.3561***
(0.1017) (0.0957) (0.1228) (0.1240)
AWD 0.0045*** 0.0041** 0.0044*** 0.0040***
(0.0017) (0.0016) (0.0016) (0.0013)
Ax -1.03e-5**  -1.03e-5***  -1.01le-5***
(3.65¢-6) (3.76¢-6) (3.84¢-6)
AxD -3.15e-6™*  -6.57e-6"*  -8.31e-6***
(9.38e-7) (1.93e-6) (2.47e-6)

The Table presents results of Fama-MacBeth regressions. For each month ¢ > 12 the -s are calculated using
daily data over the previous 12 months (months ¢ — 11 to ¢). The dependent variable in the cross-sectional
regression for each month ¢ is the average monthly excess return over the next month (¢ + 1). The standard
errors (in parenthesis) are corrected for 12 Newey-West (1987) lags. The sample period is from July, 1963
to December, 2013.
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Figure A.5: Sensitivities of the option portfolios

A Dy B. 93/ 9w
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K/S KIS,

The figure shows option sensitivtes, implied by the Black-Scholes formula, of options with different moneyness
(K/Sp) levels. The sensitivities are defined by the equations from (A.32) to (A.35). The parameter values
used are Sy = 10, T'= 1/12 (one month maturity), 30% annual volatility for the underlying, and a risk-free
rate of zero. The strike price, K, varies along the horizontal axis of each graph.
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Figure A.6: Asset Prices Sensitivity to Disappointment Aversion
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The figure displays model-implied annualized mean and volatility of the risk-free rate in Panels A and
B, loadings of the welfare valuation ratios onto market volatility and their ratio in Panels C and D, and
coefficients that determine the disappointing region in Panels E and F. The equity premium and the equity
volatility are finally shown in Panels G and H. All quantities are plotted against the degree of disappointment
aversion ¢, and for different values of the elasticity O% igntertemporal substitution .



Figure A.7: Factor Risk Premia Sensitivity to Disappointment Aversion
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C. Market downside premium D. Volatility downside premium
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E. Disappointment premium F. Disappointment probability
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The figure displays model-implied factor risk premiums in Panels A to E, and the disappointment probability
in Panel F. All quantities are plotted against the degree of disappointment aversion ¢, and for different values
of the elasticity of intertemporal substitution . 40
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