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Abstract

The paper analyzes the price dynamics of Palm, Soybean, Rapeseed, and Sunflower oils due
to their extensive uses in the food and fuel sectors and recent considerable price increases. We
consider the impact of biofuel policies and consumers’ responses. Using Johansen cointegration
and VECM, we identify two long-term equilibrium relationships that arise from biofuel poli-
cies as our first key finding. In our second insight, an asymmetric AR-EGARCH-DCC model
results show heightened volatility and correlation responses to vegetable oil price deviations,
especially post-biofuel. Biofuel policies significantly influence shifts in time-varying correlations
among these price shocks. Finally, we examine how household consumers in nine countries
respond to price shocks with a structural VAR model. The post-biofuel policy era markedly
influenced consumer reactions regarding vegetable oil price fluctuations. While most nations
show decreased sentiment with price hikes, China and Germany see increased consumer sen-
timent. South Africa’s response varies by oil type. Biofuel policies amplify these effects on
consumer confidence across all studied countries. These findings have significant implications
for policymakers trying to balance the energy transition and global food security while promot-
ing sustainable growth in vegetable oil demand across both sectors and ensuring price stability
for global agricultural commodities.
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1 Introduction

The prices of vegetable oils have significantly risen in recent years due to their amplified use in the

food and fuel sectors (Azam et al.; 2020 and Priyati and Tyers; 2016). This upsurge has ignited

an intense discussion on the interplay between vegetable oils and energy transition. Advocates

suggest biofuels can reduce the adverse effects of fossil fuels, including pollutant emissions, resource

depletion, and dependency on unstable foreign suppliers. However, critics argue that leveraging

vegetable oils as biofuels could augment disparities within the global food system, benefitting

major agribusinesses while disadvantaging small-scale farmers. Undoubtedly, vegetable oils serve

as a sustainable, renewable energy source, offering a path to decreased greenhouse gas emissions

and a chance to address climate change. Conversely, their use as biofuels raises concerns about

food security, as increased demand may reassign land and resources from food production to biofuel

production, potentially causing food shortages and a rise in food prices.

This study contributes to the literature on energy transition and the global food security debate.

Historically, energy prices have influenced agricultural costs and recently, this interaction has been

reversed due to the burgeoning use of agricultural commodities in biofuel production (Peri and

Baldi; 2010). This leads to the simultaneous growth of major vegetable oil prices. Similarly, uncer-

tainty related to price changes and volatility might be another concern for consumers, producers,

and policymakers. The use of food crops for biofuels, as highlighted by López-Cabrera and Schulz

(2016), has raised concerns about biofuels’ sustainability and sparked a global food security debate,

especially during high food prices (2010-2014) and the 2008 food crisis.1 Critics link biofuels to

increasing food costs and volatility. Motivated by these phenomena, our research seeks to address

three fundamental questions largely overlooked by previous studies: the implications of biofuel

policies on vegetable oil price comovement and long-run dynamics, the effects of such policies on

vegetable oil short-run and long-run volatility and correlation dynamics, and household consumers

responses to uncertainties surrounding price changes following biofuel policy implementation. Amid

shedding light on these issues, we document several significant findings.

1The debate surrounding global food security has been addressed by several researchers (e.g., Tadesse et al.; 2014;
Baffes and Haniotis; 2010; Boly and Sanou; 2022; Mart́ınez-Jaramillo et al.; 2019; Subramaniam et al.; 2019, amongst
others). They conclude that biofuel policies are one of the culprits, along with other factors causing concerns about
global food security. However, as Araujo et al. (2016) outlines, abolishing biofuel policies would not necessarily
increase global food security due to the competing uses of crop production, such as feed and industrial use.
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Previous studies find mixed results when investigating the interrelationships between agricul-

tural commodities in general and biofuels. For example, Zhang et al. (2009, 2010), Yu et al. (2006),

and Owen et al. (1996) indicate no direct long-run price relations between biofuel and agricultural

commodity prices, while Peri and Baldi (2010), Paris (2018), and Nazlioglu and Soytas (2012)

conclude that long-run relationships exist among the prices of vegetable oils, other commodities,

and biofuels. Unlike these studies, we only investigate the biofuel policy implementation’s effect

on major vegetable oils’ price dynamics. Understanding the long-run dynamics of vegetable oil

prices is essential for stable and affordable biofuel production, thereby enhancing the sustainability

of renewable energy policies (Ebadian et al.; 2020). Our analysis uses the Johansen cointegration

approach on Palm, Soybean, Rapeseed, and Sunflower oil price data from January 1990 to August

2021. It reveals no long-term price relationships among these oils before biofuel policy implementa-

tion but identifies two such relationships afterward. We argue that these dynamics largely depend

on the analyzed period, and biofuel policy implementation tends to induce long-run relationships.

Additionally, we investigate short-run price deviations from the long-run equilibrium using

the Vector Error Correction Model (VECM). The results reveal a 3% to 16% correction speed for

equilibrium short-run deviations post-biofuel policy implementation. This aligns with the findings of

several studies (Chiu et al.; 2016; Yoon; 2022; Natanelov et al.; 2011, Paris; 2018), which found both

short-run and long-run relationships among biofuels and agricultural commodities. Moreover, we

study the substitution effect among vegetable oils under biofuel policies. This is done by imposing

restrictions within the VECM and normalizing the long-run coefficients. Our results indicate a

long-run comovement of vegetable oils in the same direction, signifying their high substitution

nature due to the biofuel policies. This finding resonates with a substitution effect between biofuels

and agricultural commodities highlighted in Kumar et al. (2023). Likewise, Natanelov et al. (2011)

point out that the change in energy policy, which stimulated the growth of the energy feedstocks

market, has indeed impacted the comovement of crude oil and agricultural commodities.

Our comprehensive analysis delves into these oils’ intricate interrelations and sensitivities, ex-

amining how changes in one market reverberate throughout the others. Using the Diebold and

Yilmaz (2009) method, our study provides a deep understanding of the spillover effects over a span

of 100 months, both before and after the onset of biofuel policies. A standout revelation is the

pronounced dominance of Palm oil, which exerts a significant influence on the volatility of other
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vegetable oil markets. Moreover, the aftermath of biofuel policy implementation has only intensi-

fied the interdependence of these markets, as evident from the notable increase in the sensitivity

of various vegetable oil markets to price shocks. Such intricate interlinkages suggest the potential

for rapid cascading effects in response to market shocks, emphasizing the imperative of harmonized

risk management strategies.

The surge in demand for vegetable oils as renewable energy resources also introduces questions

regarding price volatility (Brahma et al.; 2022 and Pickl; 2019). To address this, we apply an

asymmetric AR(1)-EGARCH(1,1)-DCC model to the cointegrated residuals derived from the long-

run equilibrium relationships prompted by the biofuel policy implementation. This analysis delves

into the extent of unexpected short-run equilibrium price deviations. It examines if the uncertainty

surrounding these deviations fluctuates over time while considering the impacts of positive and

negative shocks. On the one hand, the EGARCH analysis reveals that unexpected short-term

equilibrium price deviations are significantly influenced by ARCH and GARCH effects, to which the

vegetable oil market’s volatility is highly sensitive. The impacts of these fluctuations on conditional

variance have prolonged effects. On the other hand, the DCC model estimates indicate significant

ARCH-like coefficients in both full (0.265) and post-biofuel (0.736) subsamples, suggesting that

unexpected short-run price deviations in vegetable oil influence the conditional correlation among

varying prices, more so in the post-biofuel period compared to the full dataset. Notably, a significant

leverage coefficient behaves differently between the samples, implying that biofuel policies have

changed the correlation patterns among vegetable oil price shocks. This change may be due to

shifts in supply and demand brought about by these policies. Hence, there’s a call for a thorough

assessment of these policies’ effects on market links and risks by stakeholders and policymakers.

This finding aligns with the results of Cheng et al. (2023), Tiwari et al. (2022), and Serletis and Xu

(2019), who report that the oil market and the biofuel feedstock markets are closely intertwined

and that biofuel policies have intensified their linkages in terms of volatility spillovers.

Lastly, the competitive demand for vegetable oils between household consumers and energy oil

producers, enhanced by biofuel policies, highlights the need to understand consumer responses to

vegetable oil price fluctuations. Insights from studying consumer responses can guide policymakers

in devising strategies to mitigate adverse effects on food security, especially in developing countries

where food expenditure is a major part of household income (Das and Gundimeda; 2022). Using
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the consumer confidence index from nine countries as a sentiment measure, we rely on the Diebold

and Yilmaz spillover analysis and a structural VAR model to explore how household consumers

respond to price shocks in the vegetable oil market. Our findings depict a robust connection

between vegetable oil price shocks and shifts in consumer sentiment, especially in the biofuel policy

era. Remarkably, the spillover effects exhibit considerable variations across countries, emphasizing

the global importance of these market dynamics. The structural VAR model reveals a positive

relation between consumer confidence and vegetable oil price shocks in China and Germany. In

contrast, a negative correlation is observed in the remaining countries except South Africa. The

African nation presents a dichotomy where Palm oil price hikes elevate consumer confidence while

Sunflower oil price shocks diminish it.

The remainder of the paper is structured as follows. The next section shows the history of

biofuel policies and a literature review of the relationships and volatility of vegetable oils and other

commodities. The third section describes the data and preliminary analyses. Section four discusses

the short-run and long-run relationships among vegetable oils. Section five highlights the volatility

and correlation analyses. Section six presents household consumers’ reactions to vegetable oil price

uncertainty. The last section discusses policy implications and concludes the article.

2 History of biofuel policies and empirical literature review

We first provide a brief but comprehensive summary of the regulations and targets that have

encouraged the growth of the biofuel industry worldwide, as outlined by Sorda et al. (2010). We

survey the initial policies implemented between 2000 and 2010 and their sustainable objectives and

long-term targets. Next, we present two main strands of literature regarding vegetable oils.

2.1 Global biofuel policies overview

Biofuel policies vary across regions, shaped by specific national needs, goals, and resources. These

policies largely aim to increase the use of renewable fuels, reduce greenhouse gas (GHG) emissions,

and promote energy independence. This overview summarizes the main biofuel policies across

different regions. It provides insight into various mandates and goals set by different countries,

from the United States and Canada to China, India, and nations across the African continent.
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2.1.1 North and South American biofuel policies

The Energy Policy Act of 2005 introduced the Renewable Fuel Standards in the US, aiming to use

4 billion gallons of renewable fuel in 2006 and increase its share over time. The revised Renewable

Fuel Standard, effective in July 2010, was based on the Energy Independence and Security Act of

2007 and required advanced biofuel producers to achieve a 50% reduction in life-cycle greenhouse

gas (GHG) emissions, while standard biofuel producers needed a 20% reduction. The Energy

Independence and Security Act set a goal of cutting gasoline use by 20% over the next ten years.

The 2008 Biomass Program aimed to reduce gasoline use by 30% by 2030 compared to 2004 levels

and convert corn-based to cellulosic ethanol2.

In line with Bill C-33, Canada’s Environmental Protection Act mandates a 5% renewable content

in gasoline by 2010 and a 2% in diesel fuel and heating oil by 2012 3 necessitating 1.9 billion

liters of ethanol production and 520 million liters of biodiesel production to meet federal mandates.

Argentina’s Biofuel Law 26.093, effective in February 2007, mandated a 5% biofuel share for gasoline

and diesel starting in January 2010, with pricing structures for ethanol and biodiesel established

through Resolutions 1294/2008 and 7/2010, respectively. Brazil’s National Program on Biodiesel

Production and Usage (PNPB), launched in 2005, required a gradual increase in biodiesel blending

with petrol-based diesel, reaching 2% between 2008 and 2012, and 5% from 2013 onwards, with a

4% biodiesel blending share mandated since July 1, 2009 (Colares; 2007).

2.1.2 European biofuel policies

With the introduction of the Directive 2001/77/EC 4, the European Union (EU) started putting

biofuel-related goals into practice. The EU set a 12% target for gross national energy consumption

and a 22.1% share of electricity to be derived from renewables by 2010. In 2003, the EU introduced

the Directive 2003/30/EC; 5 the Biofuel Directive established goals for biofuel penetration of 2.5%

by the end of 2005 and 5.75% by the end of 2010. Two significant regulations promoting the

2DOE, US Department of Energy, Biomass Multi-Year Program Plan (March 2008), available at
http://www1.eere.energy.gov/ biomass/pdfs/biomass program mypp.pdf.

3The Government of Canada Biofuels Bill Receives Royal Assent, published in EcoAction on 26 June 2008 and
available at http://www.ecoaction.gc.ca/newsnouvelles/20080626-eng.cfm

4Directive 2001/77/EC of the EU Parliament and of the Council on the promotion of electricity produced from
renewable sources in the internal electricity market, 27.9.2001, 2001.

5Directive 2003/30/EC of the European Parliament and of the Council on the promotion of the use of biofuels or
other renewable fuels for transport, 8.5.2003, 2003
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expanded use of renewable energies that continue through 2020 were passed by the EU Commission

in 2009 6. According to the Renewable Energy Directive (RED), by 2020, all energy used in the

EU must be generated from renewable sources for at least 10% of all fuels used in motor vehicles.

Along with the RED, a revised Fuel Quality Directive (FQD) was approved, mandating that by

2020, the EU’s road transport fuel mix be 6% less carbon intensive than a baseline made of fossil

diesel and gasoline. The FQD and the RED both place requirements on biofuels to meet specific

sustainability criteria. These cover the reduced greenhouse gas emissions from using the fuels and

the different types of land that could be used to produce biofuels.

2.1.3 Asian biofuel policies

In 2001, China published guidelines for bioethanol gasoline and denatured fuel ethanol for automo-

biles, followed by the ethanol promotion program in 2002. The National Development and Reform

Commission (NDRC) launched the State Scheme of Extensive Pilot Projects on Bioethanol Gaso-

line for Automobiles (SSEPP) in 2004. In 2007, the NDRC introduced the Medium and Long-Term

Development Plan for Renewable Energy, which aimed to increase renewable energy to 10% of to-

tal primary energy consumption by 2010 and 15% by 2020, with biofuels playing a significant role.

Ethanol production was projected to reach 2 million tonnes by 2010 and 10 million by 2020.

In 2003, the Indian government launched the National Mission on Biodiesel (NMB) and the

Ethanol Blended Petrol (EBP) programs, followed by the approval of the National Policy on Biofuels

in September 2008(Altenburg et al.; 2009). The policy aimed to blend biodiesel and bioethanol

with mineral diesel and gasoline at 20% each by 2017. The government guaranteed a Minimum

Support Price (MSP) for biodiesel oil seeds and a Minimum Purchase Price (MPP) for biodiesel

and ethanol. Malaysia introduced the National Biofuel Policy (BNP) in 2005, which planned for

a 5% biodiesel mandate, and the Biofuel Industries Act of April 2007 to regulate and support the

biofuel sector. Indonesia mandated minimum biofuel use levels in October 2008, aiming for a 2.5%

biodiesel contribution by 2010 and 20% by 2025, while the percentage of ethanol in gasoline was

set to be 3% in 2010 and rise to 15% by 2025 (Dillon et al.; 2008).

6Directive 2009/28/EC of the EU Parliament and the Council on the promotion of the use of energy from renewable
sources, amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC, 23.4.2009, 2009.
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2.1.4 African biofuel policies

Biofuel policies in Africa differ across countries, influenced by factors such as energy security,

environmental sustainability, rural development, and economic growth. While some countries have

established specific policies and targets to promote biofuel production and usage, others have yet

to develop comprehensive strategies. The 2007 biofuels strategy in South Africa aimed to reduce

dependence on imported fossil fuels and promote rural development through biofuel production.7

The strategy targeted a 2% biofuel penetration in the national liquid fuel supply by 2013 and 5%

by 2020. Ethiopia launched its Biofuels Development Strategy and Action Plan in 2008, requiring

petroleum companies to blend 5% biofuels into gasoline and diesel (Berhanu et al.; 2017).

Several other African countries, such as Nigeria, Ghana, Morocco, Kenya, Tanzania, and

Mozambique, have developed biofuel promotion policies. Kenya, for instance, set a target to blend

10% ethanol into gasoline by 2022. Tanzania established a biofuels policy, including a regulatory

framework for biofuels and incentives for investment in the sector. Mozambique developed a policy

promoting ethanol and biodiesel production from sugarcane, jatropha, and other crops (Ohimain;

2013). Nigeria aimed to increase biofuel usage in transportation to 20% by 2020, and Ghana

targeted a 10% increase in biofuel usage in the transport sector by 2020 (Duku et al.; 2011).

2.2 Comovement between vegetable oils and other commodities

Studies primarily employ cointegration analysis and estimate the vector error correction model

(VECM) to investigate energy and agricultural commodity price interactions. Peri and Baldi

(2010), Saghaian (2010), Campiche et al. (2007), and Ciaian and Kancs (2011a,b) all conclude that

energy prices drive feedstock price equilibrium levels. Likewise, Serra et al. (2011); Wixson and

Katchova (2012), Mallory et al. (2012), Pokrivčák and Rajčaniová (2011), and Busse et al. (2010)

similarly find evidence of long-run relationships between energy and agricultural commodity prices.

Zhang et al. (2021) use VECM and directed acyclic graph (DAG) models to explore the role of

Shanghai crude oil futures in the international oil market, finding that their pricing power is limited

but has begun to have a contemporaneous influence in the Asian oil market.

Another strand of the literature explores the links between key vegetable oil prices using other

7Republic of South Africa. (2007). Biofuels Industrial Strategy of the Republic of South Africa.
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approaches. Azam et al. (2020), deviating from the common VECM, employ wavelet-based analysis

to explore these links from 2003 to 2018. Though overall market integration remains weak, they

find significant contagion and interdependence among these oils. Post-2015, Palm oil’s interaction

with other edible oils declined, while Soybean and Rapeseed oils showed increasing interdependence,

with Soybean oil emerging as a potential market leader. Cha and Bae (2011) employ a structural

vector auto-regression (SVAR) model to examine how rising international oil prices would affect

corn pricing and demand in the US. They find that oil price increases boost short-term corn and

bioethanol demand, but corn prices stabilize long-term as corn exports and feedstock demand

decline. Similarly, McPhail (2011), Wang and McPhail (2014), and Qiu et al. (2012) also use an

SVAR model. McPhail (2011) supports bidirectional causality between crude oil and ethanol prices.

Zhang et al. (2010), Mallory et al. (2012), and Qiu et al. (2012) prove that fossil and biofuel market

shocks do not spill over to agricultural commodity prices.

Other studies investigate the long-run effects of oil prices on agricultural commodity prices while

considering the impact of biofuel production. Based on the estimation of nonlinear, cointegrating

regime-switching dynamics, Paris (2018) shows that the development of biofuels has increased the

oil price effect on agricultural commodity prices. Conversely, Yu et al. (2006) examine the long-term

interdependence of primary edible oils and the interaction between vegetable and crude oil prices

using time-series techniques and DAGs. Their study involves Soybean, Sunflower, Rapeseed, Palm

oils, and the World’s average crude oil price. They discover a long-term cointegration among these

five oil prices, with Soybean oil dominating in the long run and crude oil having an insignificant

impact on edible oil prices. Esposti (2021) proposes a new approach using a common latent factor

hypothesis and a FAVAR-MGARCH model to study the long-run trends of resource and commodity

prices. The study finds a minor increase in long-term nominal prices over recent decades, paralleled

by stabilizing long-term real prices after a consistent decline.

2.3 Volatility transmission among vegetable oils and other commodities

Studies also examined the connectedness and volatility transmission among crude oil and agri-

cultural commodities. Kang et al. (2019) find that vegetable oils are the most influential price

volatility source for other commodities and crude oil. Their study also reveals a bi-directional and

asymmetric connectedness between oil and agricultural commodity markets at various frequency
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bands. Similarly, Naeem et al. (2022) study the nexus between oil shocks and agricultural com-

modities, documenting stronger intra and weaker inter-connectedness with time-varying spillovers

in the short and long run. They provide valuable insights for policymakers and investors. On the

other hand, Hasanov et al. (2016) focus on the impact of crude oil price volatility on the price

changes of major edible oils, which serve as the main feedstock for the biodiesel industry in the

European Union. They find that crude oil price uncertainty significantly affects the price returns

of major feedstock edible oils and that the size of the impacts is mainly commodity-specific.

Meanwhile, the influence of external factors on commodity prices and volatility risk has also

been a focus in the literature. Guo and Tanaka (2022) use a Time-Varying Parameter Vector

Auto-Regression (TVP-VAR) to study the dynamic interplay of African food prices, U.S. biofuel

production, global energy and food prices, and financial speculation. They find that U.S. bio-

fuel production and commodity speculation considerably impact African food prices, with global

events like the dot-com bubble, global commodity boom, and the COVID-19 pandemic amplifying

the interconnection with cross-border factors. Likewise, Yang and Karali (2022) investigate the

existence of volatility transmission between soybean and their products, spanning the U.S.-China

supply chain. Their study reveals the existence of volatility spillovers between the two markets. In

particular, the volatility responses in Chinese soybean product markets to innovation from the U.S.

soybean have weakened after 2009. They also study the volatility reactions to two significant eco-

nomic events: the 2008 financial crisis and the 2018 U.S.-China trade dispute. Evidence supports

volatility reactions only during the financial crisis.

Another body of literature explores the price and volatility risk between energy and agricultural

commodities, volatility transmission between spot and futures markets, and market integration

and volatility drivers. López-Cabrera and Schulz (2016) examine the volatility and correlation

risk structure between energy and agricultural commodities in Germany, employing GARCH-DCC

and multivariate volatility models to analyze short and long-run links. Malhotra and Sharma

(2016) investigate the volatility transmission process between spot and futures markets in India

using a bivariate GARCH model, finding that an unexpected increase in futures trading activity

destabilizes spot price volatility in three out of four commodities studied. Zhang et al. (2009)

study the integration of domestic and foreign markets for major oilseeds and edible oils using the

Johansen cointegration test and a GARCH model, discovering that interconnected markets convey
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volatility from one to another, emphasizing the importance of understanding pricing dynamics for

effective policies. Finally, Brümmer et al. (2016) analyze the volatility drivers and spillover effects

of oilseeds and vegetable oils markets using a VAR model and a standard GARCH model, finding

that spillover effects are evident and volatility drivers are market-specific, implying that policies

aimed at lowering volatility must be tailored to the market in question.

While previous studies have made significant strides in understanding the interplay between

energy, agricultural commodity prices, and biofuel production, they still need to analyze the effects

of biofuel policy implementation on vegetable oil price dynamics. This gap, which this article

aims to fill, is a crucial area of exploration given the significant role vegetable oils play in biofuel

production and their diverse end-use nature. In addition, this research delves into an area that has

often been overlooked: the impact of price changes and biofuel policy implementation on household

consumer behaviors. This is a critical issue to understand as it affects individual household decision-

making and could have broader implications for economic policy. Hence, by exploring these two

areas, our study hopes to contribute significantly to the existing body of knowledge and provide a

more nuanced understanding of the dynamics at play.

3 Data and preliminary analyses

We analyze volatility and long-term dynamics of major vegetable oils (Palm, Soybean, Rapeseed,

Sunflower) using monthly price data from January 1990 to August 2021 from the Federal Reserve

Economic Data (FRED). These benchmark prices, representing the global market, are denoted in

nominal U.S. dollars per metric tonne. Additionally, we examine consumer reactions to price shocks

and biofuel policy shifts using the monthly consumer confidence indexes of nine representative

countries (U.S., China, U.K., Australia, South Africa, France, Germany, Japan, and New Zealand),

sourced from the OECD. The indicator gauges future consumption and savings trends based on

households’ economic expectations and sentiment, with values above or below 100 reflecting positive

or negative economic outlooks, respectively.

We begin our analyses by visually examining the time series of the vegetable oil prices, which

logarithmic transformations are displayed in Panel A of Figure 1. Interestingly, the figure shows

episodes of high vegetable oil prices that have predominantly marked supply-demand imbalances,
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policy shifts, and global crises. In 2007-2008, a substantial price surge was due to a global food price

crisis, triggered by increased biofuel demand, particularly in the U.S. and Europe, which propelled

crops such as soy, corn, and palm oil, crucial for vegetable oil production. Another pronounced

spike was witnessed in 2011-2012, caused by a mix of biofuel demand, adverse weather conditions

affecting yield, and alterations in trade policies. A more recent example was during the COVID-19

pandemic in 2020. Supply chain disruptions due to global lockdowns and changes in consumer

behavior and dietary patterns led to significant price escalations.

In the realm of vegetable oil price dynamics, a striking phenomenon emerges in Panel A of

Figure 1, where the four major vegetable oil price series exhibit exceptional persistence. Despite

occasional brief deviations, these series move synchronously, showcasing remarkable coherence over

time. This coherence, accompanied by substantial persistence, prompts us to delve into unit-root

tests to discern the presence of non-stationarity. The outcomes of two distinct tests - ADF, and PP -

are presented in Table 1 for the entire sample and pre- and post-biofuel subsamples.8 Corresponding

unit-root test results for the logarithmic transformations of country consumer confidence indexes

are featured in the right panel of Table 1. Notably, all tests converge to the conclusion that Palm,

Soybean, Rapeseed, and Sunflower oil prices and the consumer confidence indexes of seven countries

demonstrate non-stationarity. Notably, the PP test does not reject the presence of a unit root for

any country’s consumer confidence index. The transformation to first-difference series renders them

stationary, mirrored by their summary statistics in the remaining cells of Table 1.

Upon considering the full sample, an enlightening comparative analysis of price changes’ de-

scriptive statistics unfolds for the four major vegetable oils. Striking parallels emerge, with the

most pronounced values evident in Palm and Sunflower oils. For instance, Palm oil’s average price

change hovers at 0.4%, slightly surpassing the 0.3% registered by the other three major vegetable

oils. Indicative of their shared trend, these oils exhibit high volatility, portrayed by their sizable

standard deviations and the substantial range between the 5th and 95th percentiles. Specifically,

the standard deviation spans from 5.4% for Soybean to 7.2% for Palm and Sunflower oils. While

the 5th percentile wavers between -8.3% for Rapeseed oil and -11.6% for Palm oil, the 95th per-

centile fluctuates from 8.5% for Sunflower oil to a notable 11.8% for Palm oil. Divergent skewness

values emerge: negative for Palm and Soybean oils (-0.241 and -0.137, respectively) and positive for

8ADF stands for the Dickey and Fuller (1979,1981)’s test, and PP for the Phillips and Perron (1988)’s test.

11



Rapeseed and Sunflower oils (0.501 and 2.383, respectively). Notably, vegetable oil prices exhibit

excess kurtosis, spanning from 1.192 for Soybean oil to an extraordinary 26.931 for Sunflower oil.

Dividing the entire sample into pre- and post-biofuel periods brings forth further insights. In

the post-biofuel phase, Palm oil’s average price change triples to 0.6%, with an increase in standard

deviation from 6.8% to 7.6%. Meanwhile, the post-biofuel to pre-biofuel ratio for Soybean oil’s

average price change is six, with relatively stable standard deviations of 5.2% and 5.6% across

both periods. In contrast, Rapeseed oil maintains a consistent average price change between the

two sub-periods but experiences a substantial drop in standard deviation from 6.4% pre-biofuel to

5.0% post-biofuel. For Sunflower oil, post-biofuel average price change witnesses a 50% reduction

compared to its pre-biofuel counterpart, while the standard deviation sharply escalates from 5.6%

pre-biofuel to 8.6% post-biofuel.

While exploring the landscape of economic indicators, a compelling contrast emerges between

the intricate dynamics of vegetable oil prices and the distinct behavior of consumer confidence

indexes. Panel B of Figure 1 presents the logarithmic values of these indexes across selected

countries, representing diverse geographical regions. This selection provides unique insights into

the varying economic contexts of these nations.

Upon visual inspection, a notable absence of any discernible time trend characterizes these

country’s confidence indexes. This observation gains further support as the virtually zero averages

of their first-difference series remain consistent across all considered countries, regardless of the

sample period. Significantly, the standard deviations of these consumer confidence indexes remain

notably low, oscillating between 0.2% and 0.4% across different sample periods. This starkly

contrasts the substantial standard deviations witnessed in the realm of vegetable oil price changes,

ranging between 5.0% and 8.6%, thereby suggesting a considerable difference in volatility.

These descriptive statistics vividly illuminate the contrasting nature of volatility between veg-

etable oil prices and consumer confidence indexes on a global scale. Moreover, a deeper examination

of specific countries’ consumer reactions unveils interesting trends. For instance, consumer reactions

in the US, UK, Japan, and China exhibit negative skewness across all sample periods. However,

within this pattern, US and Japan’s post-biofuel negative skewness values of -0.881 and -1.127

stand out compared to their pre-biofuel values of -0.234 and -0.269, respectively. Conversely, the

UK and China exhibit negative skewness values with higher magnitudes before the biofuel period,
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which shift to more moderate levels post-biofuel.

Australia and South Africa, on the other hand, display positive consumer confidence index

skewness throughout various sample periods, with the latter exhibiting a more consistent skewness

value around 0.600 across all periods. Furthermore, an interesting observation arises from the

excess kurtosis values: all country consumer indexes, except those of China and France, experience

a substantial increase in excess kurtosis during the post-biofuel period.

This comprehensive examination underscores the intriguing interplay between the relatively

stable realm of global consumer confidence indexes and the dynamic and volatile landscape of

vegetable oil prices. It emphasizes the need to consider these varied economic indicators holistically

to understand the broader economic picture comprehensively.

Panel A of Table 2 presents the correlation values between major vegetable oil price changes.

Interestingly, all correlation coefficients are positive, indicating that all variables move in the same

direction. A standout observation is the correlation between Palm and Soybean oils, which was

62% in the pre-biofuel era but rose to 77% post-biofuel. Conversely, Sunflower oil’s price variation

consistently ranks the least correlated with other oils across all sample periods. After the biofuel

policy implementation, a general strengthening in correlations was observed. However, an exception

was found between Sunflower oil and Palm and Soybean oils, where the correlation decreased.

When we shift our focus to the correlation between vegetable oil prices and country consumer

confidence indexes, the landscape varies. Before the biofuel policy, these correlations were not glob-

ally significant. However, in the post-biofuel era, stark correlations emerged in specific countries:

the US, Germany, Japan, and New Zealand. While the first three countries show a positive correla-

tion, New Zealand exhibits a negative one. This discrepancy underscores the inherent heterogeneity

in the relationships based on the country.

Further diving into the interpretation and the avenues for subsequent analysis, the correlations

paint a picture of a potential long-term link between vegetable oil prices and consumer confidence

indexes. Notably, these correlations primarily capture the long-term comovement between the

two variables and are silent on their short-term fluctuations. An intriguing exploration lies ahead

to gauge the consumer confidence index’s instantaneous response to shifts in vegetable oil prices.

Given the observed similarities in directional movements across vegetable oil prices, we deemed it

prudent to conduct a Principal Component Analysis (PCA). This analysis aimed to unveil shared
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underlying factors and evaluate the biofuel policy’s imprint on these co-movements.

Panel B of Table 2 casts light on the results gleaned from the PCA. The first principal component

is dominant for both the comprehensive sample and its post-biofuel counterpart, accounting for

57.0% and 63.0% of the total variance, respectively. Moreover, each type of vegetable oil has a

meaningful contribution to this dominant component, with an average loading hovering around

0.5. This suggests that this primary component aptly captures the overall oil price co-movement.

However, the pre-biofuel subsample paints a slightly different picture, where the first component

encapsulates a lesser 55.8% of the total variance. Yet, when we combine the contributions of the

first three principal components, they collectively account for 91.1% of the total variance. This

figure is below the 93.5% and 94.9% observed for the comprehensive and post-biofuel samples.

Drawing from these patterns, one can infer a correlation between the introduction of the biofuel

policy and heightened integration within the vegetable oil market. This heightened integration

underscores the notion of one vegetable oil being a potential substitute for another, a trait that

seemingly has gained prominence after the biofuel policy’s rollout.

4 Long- and short-run relationships among vegetable oil prices

4.1 Cointegration analysis of vegetable oil prices

Engle and Granger (1987) observed that a stationary series could be formed through a linear combi-

nation of two or more non-stationary series, a situation termed cointegration. This concept becomes

relevant in examining vegetable oil prices, which show simultaneous movement in a uniform direc-

tion (see Figure 1). The presence of a unit root in each series further necessitates the investigation

of long-run equilibrium relationships. Johansen (1995)’s cointegration test is an optimal empirical

analysis tool. We apply this test to the logarithmic prices of the four vegetable oils across our entire

sample. This approach is underpinned by a vector autoregressive (VAR) model and leverages the

rank of the coefficient matrix. Specifically, our analysis deploys the Trace test, wherein the null

hypothesis proposes the number of distinct cointegrating vectors to be less than or equal to r,

contesting an alternative hypothesis suggesting more than r vectors.

To ensure thorough testing, we utilize the 1% critical values for the Johansen cointegration Trace

test instead of the traditional 5% critical values. This rigorous approach reduces the likelihood of
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a Type I error, which is falsely rejecting the null hypothesis of no cointegration among the prices.

Using the 1% critical values, we can be more confident that the price series are truly cointegrated.

Our short time series could result in misleading outcomes, so a stricter critical value provides

greater confidence in the cointegration relationships identified. Johansen’s test can overestimate

the number of cointegrating relationships, particularly in small samples (Reimers; 1992; Cheung

and Lai; 1993). However, using the 1% critical value makes the test less susceptible to this bias.

Finally, our decision to adopt a 1% critical value demonstrates the robustness of our findings. If

the cointegrating relationships hold at this level, it provides strong evidence to support our results.

A positive Trace test outcome, indicating one or more cointegrating vectors, will confirm a

long-run equilibrium relationship among the series. For a more nuanced understanding, we further

segregate the dataset into pre- and post-biofuel periods, subjecting each to the same cointegration

test. Our results (refer to Table 3) reveal fascinating insights. The Trace test statistics surpass

critical values for the full sample and the post-biofuel subset, only for the first two null hypotheses,

signifying two distinct long-term relationships among vegetable oils, both overall and post-biofuel

policy implementation. However, the pre-biofuel subsample, as shown in the middle panel of the

table, indicates otherwise. Here, the Trace test statistic of 40.74 falls short of the critical value of

54.68, thus failing to reject the null hypothesis of zero cointegrating vectors. Consequently, it can

be inferred that the introduction of the biofuel policy has triggered long-run relationships among

vegetable oils, which were absent before its implementation.

Biofuel policies promoting production and use can intertwine agricultural markets, like palm,

soybean, rapeseed, and sunflower oils, with energy markets, altering traditional pricing models

primarily driven by food-related demand, supply dynamics, and crop-specific production costs. The

new shared demand from biofuel production can interlink these oil prices via the substitution effect,

where if one oil’s price rises, producers may switch to a different oil, thus inflating its demand and

price. Moreover, due to their substitutive nature with fossil fuels, biofuel prices can be influenced

by the latter’s price fluctuations, forming an energy market linkage and establishing a long-term

pricing relationship between these oils. Lastly, biofuel policies could foster the cultivation expansion

of these oil crops, gradually aligning their prices due to similar production costs, technological

evolution, and climate impacts, despite individual oil prices being influenced by other factors.

Thus, biofuel policies introduce new shared demand and supply sources, creating potential long-
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term price relations among these oils.

Early studies exploring long-run relationships have reported negligible or no cointegration

among vegetable oil prices. For example, Owen et al. (1996) found no indication of cointegra-

tion across five major internationally traded vegetable oils from 1971 to 1993. Similarly, Yu et al.

(2006) detected only a single long-run cointegration link among five vegetable oil prices using data

from 1999 to 2006. Notably, most biofuel policies were initiated post-2000, leading us to question

the 2006 cut-off. To address this and validate our results, we conducted the Johansen cointegration

test again, adjusting the cut-off years to 2003 and 2008 respectively. Despite this modification, our

findings remain consistently in line with the original conclusions.

4.2 Short-term dynamics of vegetable oil prices

Despite their existence, long-term equilibrium relationships between agricultural oil prices don’t

remain constant over time, similar to any cointegrated variables. Deviations from this equilibrium

frequently occur and are corrected so that price fluctuations are non-divergent, thus affecting the

predictability of vegetable oil prices and their short-term dynamics.

The Vector Error-Correction Model (VECM) is an ideal tool for empirically analyzing how

short-term equilibrium deviations impact joint price dynamics. We specify this model as follows:

∆yt = λ0 + λ1w1,t−1 + λ2w2,t−1 +A1∆yt−1 + . . .+Ak∆yt−k + vt (1)

where yt = (LPMOt,LSBOt,LRSOt,LSFOt)
′ denotes the vector of log vegetable oil prices, λ0

is the 4-dimensional vector of intercepts, w1,t−1, and w2,t−1 are the two error-correction terms or

cointegrated residuals whose the corresponding 4-dimensional vectors of adjustment rate parameters

are λ1, and λ2, respectively. The 4×4 matrices Ai, i = 1, . . . , k, are the auto-regressive coefficients,

where k is the number of lags, and vt is the 4× 1 vector of error terms.

The two error-correction terms are specified as follows:

wi,t = α0i + α1iLPMOt + α2iLSBOt,+α3iLRSOt + α4iLSFOt (2)

and the coefficient of the target variable in each error-correction term is normalized to one, i.e.,
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α11 = α22 = 1, and zero in the other equation, i.e., α12 = α21 = 0. Notice that the duo of leading

vegetable oils (Palm, and Soybean) are used as the target variables in the long-run specification

of the VECM. Therefore, w1,t measures short-run deviations of Palm oil price from its long-run

equilibrium with Rapeseed and Sunflower oil prices. Likewise, w2,t measures short-run equilibrium

deviations of Soybean from Rapeseed and Sunflower oil prices. We subsequently analyze fluctuating

uncertainty around these vegetable oil short-term equilibrium price deviations and their dynamic

correlations. Obviously, the VECM estimation only makes sense for the full sample and the post-

biofuel subsample where data evidence long-run relationships among vegetable oil prices.9

Table 4 reports VECM results given the specifications (1) and (2). Equation (2) implies that the

long-term percentage price increases in Palm and Soybean oils can be represented as weighted sums

of their Rapeseed and Sunflower counterparts. These long-run coefficients are displayed in Panel A.

In the full sample, Palm oil’s percentage price increase is influenced significantly by weights of 0.928

for Rapeseed oil and an insignificant 0.049 for Sunflower oil. Similarly, for Soybean oil’s percentage

price increase, the weights are statistically insignificant at -0.140 for Rapeseed oil and significant

at 1.054 for Sunflower oil. In the post-biofuel subsample, the interpretation remains consistent,

but the importance of individual oils shifts. Sunflower oil price significantly impacts Palm oil’s

equilibrium price, while Rapeseed oil plays a more significant role in determining Soybean oil’s

price. Formally, the post-biofuel estimates show that for Palm oil’s percentage price increase, the

weights are insignificant at 0.331 for Rapeseed oil and significant at 0.793 for Sunflower oil. For

Soybean oil’s percentage price increase, the weights are significant at 0.685 for Rapeseed oil and

0.593 for Sunflower oil. These significant weights demonstrate that vegetable oils can be readily

substituted for each other since their prices move together in the long run. Additionally, based on

post-biofuel estimates, a high correlation of 0.846 between the two error correction terms further

confirms this substitutability, compared to the lower correlation of 0.407 in the full sample.10 These

findings suggest that biofuel policies have reinforced the substitutability of vegetable oils.

The remaining coefficient estimates from the VECM provide valuable insights into the short-

run equilibrium price deviations and the dynamics of Palm, Soybean, Rapeseed, and Sunflower oil

9We analyze short-run relationships among vegetable oils using a standard VAR model before the implementation
of the biofuel policy since the Johansen cointegration test result shows no long-run relationship during the period.
Table A1 in the external appendix presents the results of the standard VAR model. The findings show a strong
relationship between vegetable oil prices in a given period and one period before.

10See Table A2 in the external appendix.
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prices. When a deviation occurs at a given period, the subsequent price movements indicate a

tendency to revert to equilibrium. In our full sample estimates, we find that if Palm oil is currently

trading above its equilibrium value, as determined by Rapeseed and Sunflower oils, denoted by a

positive value of w1, approximately 8.5% of this price gap negatively impacts the expected price

change of Palm oil in the next period. This contribution directly leads to adjusting Palm oil’s price

towards its long-term equilibrium value.

Similarly, if Soybean oil is above its equilibrium value based on Rapeseed and Sunflower oils,

denoted by a positive value of w2, then around 3.3% and 9.2% of this gap positively impact the

expected price changes of Palm and Sunflower oils in the next period, respectively. These indirect

effects help bring the price of Soybean oil closer to its long-term equilibrium value.

The patterns remain consistent when examining the post-biofuel subsample estimates. In this

case, approximately 9.1% and 10.2% of Palm oil’s current short-term equilibrium price deviations

significantly impact the expected price changes of Soybean and Sunflower oils in the next period,

respectively, further contributing to the partial restoration of Palm oil’s price disequilibrium. Ad-

ditionally, 16.1% of the current short-term equilibrium price deviations of Soybean oil significantly

impact the expected price change of Palm oil in the next period, indirectly contributing to partially

restoring Soybean oil’s price disequilibrium.

These indirect effects, where the movements of other agricultural commodity prices participate

in correcting each other’s disequilibrium, further support the argument of substitutability among

vegetable oils. Notably, the impact of biofuel policies on vegetable oil prices is also evident through

the greater predictability of price changes observed in the post-biofuel period. For instance, com-

pared to the total sample, the R-squared values increase from approximately 17.5% to 24% and

26% for Rapeseed and Sunflower oils, respectively.

It is important to highlight that the price changes of Palm, Soybean, and Sunflower oils are

positively predicted by their previous values, and these coefficients are statistically significant at the

1% level for both sample periods. Additionally, the previous price change of Soybean oil positively

predicts the current price of Rapeseed oil, which is consistent with the pre-biofuel results.

Our approach aligns with similar studies utilizing the VECM to investigate various agricultural

commodities’ short-run and long-run dynamics, including vegetable and energy oils. However, it’s

important to acknowledge that the results are specific to the asset menu and the sample period
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under consideration (López-Cabrera and Schulz; 2016; Lajdová et al.; 2017; Siami-Namini; 2019).

Overall, the VECM analysis provides valuable insights into three key aspects: the interconnec-

tions between vegetable oil prices, the mechanisms involved in the recovery of long-term equilibrium

from short-term deviations, and the influence of biofuel policies on these market dynamics.

In our study, we sought to measure how each of the four major vegetable oil markets impacts the

others. We used the Diebold and Yilmaz method to quantify the spillover effects, examining how

shocks in each vegetable oil market predict changes in the others over 100 months. Our analysis

was carried out for the entire sample and subsamples before and after implementing biofuel policies.

Our findings, outlined in Panel A of Table 5, reveal a strong spillover effect from Palm oil to

other vegetable oil markets. In the full sample, the shocks in the Palm oil market accounted for a

significant 104.31% of the total 212.27% forecast error variance coming from all other vegetable oil

markets. The impact of Palm oil shocks became even more pronounced in the period following the

implementation of biofuel policies, contributing 204.76% out of 277.88%, a marked increase from

the pre-biofuel period, where Palm oil’s contribution was 73.57% out of 104.91%.

Moreover, we observed an increase in the sensitivity of Soybean, Rapeseed, and Sunflower oil

markets to shocks from other vegetable oils in the post-biofuel policy period. In the full sample,

the contribution of other vegetable oils to the forecast error variance was 40.37% for Soybean,

55.24% for Rapeseed, and 80.24% for Sunflower. However, in the post-biofuel period, these values

more than doubled to 88.22%, 91.86%, and 85.69%, respectively, compared to their pre-biofuel

contributions of 41.58%, 20.78%, and 38.48%.

Our study unveils significant economic implications, notably the heightened comovement, and

substitutability among Palm, Soybean, Rapeseed, and Sunflower oil prices, largely driven by the

implementation of biofuel policies. This close interrelation suggests that shocks in one market could

quickly proliferate through others (Mallory et al. 2012; Busse et al. 2010), emphasizing the necessity

for coordinated risk management strategies. Given Palm oil’s dominance in the market, its price

volatility could notably influence other vegetable oils, thus affecting the overall market stability.

Therefore, policymakers should consider these market interdependencies and the impact of biofuel

policies on vegetable oil price dynamics when formulating future regulations and interventions.
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5 Volatility analysis of vegetable oils

To analyze the volatility of vegetable oils, we fit an exponential generalized autoregressive condi-

tional heteroscedasticity (EGARCH) model to each cointegrated residual from equation (2). Figure

2 displays the plots of cointegrated residuals (w1,t, and w2,t) and evidence periods of high and low

volatility. Formally, we specify the following AR(1)-EGARCH(1,1) for the cointegrated residuals:

wi,t = ϕ0i + ϕ1iw1i,t−1 + ui,t

ui,t = σi,tϵi,t with ϵi,t ∼ N (0, 1)

lnσ2
i,t = ωi + αi

(∣∣ϵi,t−1

∣∣− E
[∣∣ϵi,t−1

∣∣])+ γiϵi,t−1 + βi lnσ
2
i,t−1

(3)

where the conditional variance recursion is due to Nelson (1991). The parameters αi and βi are the

ARCH and GARCH coefficients, respectively, and the parameter γi captures the leverage effect.

Positive values of γi would imply that negative short-term price deviations increase the conditional

volatility by a larger magnitude than positive innovations.

The EGARCH specification (3) analyzes how large unexpected short-term vegetable oil equi-

librium price deviations are, and if the size of these deviations varies through time. In addition, we

also study how correlated are these deviations and if these correlations are time-varying. Unlike

traditional approaches used in the literature, we estimate a multivariate volatility model for the

cointegrated residuals that combines the above AR(1)-EGARCH(1,1) specification with a dynamic

conditional correlation (DCC) model, accounting for asymmetric behavior (i.e., leverage effects)

both at univariate and multivariate levels. Following Engle (2002) and Cappiello et al. (2006), we

specify the DCC as:

ρt = JtQtJt

Qt = (1− θ1 − θ2) Q̄+ θ1ϵt−1ϵ
′
t−1 + θ2Qt−1 + θ3

(
ηt−1η

′
t−1 − E

[
ηt−1η

′
t−1

]) (4)

where Qt =
(
qij,t
)
is a 2 × 2 positive-definite matrix, Jt = diag

(
1

√
q11,t

,
1

√
q22,t

)
is a diagonal

matrix, ϵt =
(
ϵ1,t, ϵ2,t

)′
is the vector of standardized innovations in cointegrated residuals, Q̄ denotes

an unconditional covariance matrix, and the parameters θ1 and θ2 are the correlation persistence

parameters satisfying 0 < θ1+θ2 < 1. Likewise, we have ηt =
(
η1,t, η2,t

)′
where ηi,t = ϵi,t1

(
ϵi,t < 0

)
,
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and where 1 (·) denotes the indicator function.11

Applying the GARCH-DCC modeling approach to the two cointegrated residuals rather than

the four original vegetable oil price residuals allows a more nuanced understanding of the volatility

dynamics in vegetable oil markets. The cointegrated residuals represent the long-term deviations

from equilibrium relationships between Palm, Soybean, Rapeseed, and Sunflower oil prices, encap-

sulating significant economic interactions. Employing GARCH DCC for these residuals reduces

the model’s complexity by lessening the number of parameters needed and effectively captures

the time-varying volatility and correlations inherent in these deviations. The GARCH component

illuminates how these deviations’ volatility evolves, mainly how it responds to market shocks. Con-

currently, the DCC element dynamically tracks the correlations between these residuals, which is

crucial for recognizing interdependencies during market turbulence. This dual-faceted model pro-

vides a more precise risk management tool, benefiting trading strategies and procurement decisions

by identifying periods of heightened price co-movements and volatility.

Table 6 presents the outcomes of the GARCH-DCC model estimation, offering key insights into

the short-term dynamics, volatility, and correlation patterns of the vegetable oil markets. The

autoregressive parameters for all cointegrated residuals, in both the complete and the post-biofuel

periods, are both significant and high (0.937 for w1,t and 0.929 for w2,t for the full sample; and

0.892 and 0.947 for w1,t and w2,t respectively for the post-biofuel subsample). This suggests that

while short-term deviations from the long-term equilibrium price of vegetable oils return to the

mean, they persist over an extended period before realigning with the long-term equilibrium. This

may reflect the time the market takes to adjust to these deviations, potentially due to the spread

of information or biases in market participant behavior.

Both sample sets exhibit statistically significant ARCH coefficients, indicating an intensive

response of volatility to unexpected short-term deviations in vegetable oil equilibrium prices. The

response is more pronounced for the post-biofuel and Soybean oil price deviations, suggesting that

unanticipated shifts in vegetable oil prices substantially influence future volatility. This results in a

heightened risk and unpredictability in the market, particularly evident in the post-biofuel period.

11Cappiello et al. (2006) point out a significant flaw in the original GARCH-DCC approach of Engle (2002): the
conditional correlation dynamics ignores asymmetric effects. This also means that while the original DCC model
considers the influence of previous shocks on future conditional volatility and correlation, it is unable to distinguish
between positive and negative shocks. Including the last term in the right-hand-side of the recursion in equation (4)
accounts for these asymmetric effects.
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Furthermore, the enduring impact of volatility shocks on the vegetable oil market, as implied by

the high GARCH coefficients in both sample sets (0.772 for w1,t and 0.914 for w2,t for the full

sample; and 0.897 for w1,t and 0.860 for w2,t for the post-biofuel subsample), suggests that market

participants may experience extended periods of risk and uncertainty. This has critical implications

for decision-making and risk management strategies for market actors, policymakers, and investors.

Additionally, the significant and positive ARCH-like coefficient in the conditional correlation

dynamics for both samples (0.265 for the full sample and 0.736 for the post-biofuel subsample)

signifies that the conditional correlation, akin to conditional variance, responds significantly to

unexpected short-run vegetable oil equilibrium price deviations. This demonstrates that price de-

viations influence the correlation among different vegetable oil prices. Furthermore, the significant

leverage coefficient, which exhibits contrasting behavior in both samples (positive for the full sample

and negative for the post-biofuel subsample), suggests a fundamental shift in the time-varying cor-

relations among vegetable oil price shocks due to biofuel policies. This shift in correlation patterns

could result from altered supply and demand dynamics instigated by these policies, underscoring

the need to carefully evaluate these policies’ impact on market interconnectedness and risk exposure

by market participants and policymakers.

Our GARCH-DCCmodel results illuminate the intricacies of short-term price deviations, volatil-

ity, and correlation patterns in the vegetable oil market, particularly in light of biofuel policies.

These findings underscore the need to monitor unexpected price movements and consider the

potential risks and uncertainties associated with prolonged market adjustments. Market actors,

policymakers, and investors should leverage these insights for informed decision-making, devising

effective risk management strategies, and maintaining market stability amidst evolving economic

circumstances and policy interventions (Brümmer et al.; 2016; López-Cabrera and Schulz; 2016).

6 Household consumers’ reactions to vegetable oil price shocks

As we venture further into an era marked by energy transition and environmental consciousness, it

is vital to consider the broader implications of these shifts on various market sectors. Remarkably,

given its dual role in the food and burgeoning biofuel industries, the vegetable oil industry provides

a compelling case for analysis. To further enrich our understanding of this complex market, ex-
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amining consumer responses to vegetable oil price shocks is critical, especially in major importing

and exporting countries. This analysis allows us to explore how these reactions could influence or

be influenced by the transition towards renewable energy sources and the subsequent post-biofuel

policies. While our research has delved into the long-term relationships, volatility, and correlation

dynamics among vegetable oils, incorporating consumer reactions adds a crucial, market-facing

dimension. By investigating how consumers respond to price shocks in these key countries, we

can illuminate how household behaviors are shaped by and shape the broader energy transition.

This added perspective deepens our understanding of the vegetable oil market dynamics and in-

forms stakeholders, policymakers, and consumers as they navigate the challenges and opportunities

presented by this transformative period.

Our investigation starts by measuring the extent to which shocks to each of the four major

vegetable oils contribute to the forecast error variance of the consumer confidence index in various

countries. Utilizing Diebold and Yilmaz’s methodology for measuring spillovers, we quantify the

percentage contribution of shocks from each vegetable oil to innovations in the consumer confidence

indexes of nine countries over an extended duration of 100 months. We trace these vegetable oil

shocks back to the VECM, as defined in equation (1) for the full sample and post-biofuel subsample,

and the standard VAR model for the pre-biofuel subsample.

Our results in Panel B of Table 5 indicate a pronounced impact of vegetable oil shocks on

consumer confidence indexes, especially in the post-biofuel period, across all surveyed countries.

We observe varying magnitudes of change when comparing the spillover ratios in the post- to the

pre-biofuel subsample. The spillover ratio for the United States, the United Kingdom, Germany,

and Japan approximately doubled. For China, Australia, and New Zealand, the ratio increases

fivefold. And for South Africa and France, the ratio surges eightfold and ninefold, respectively.

Interestingly, we observe shifts in the sources of these spillovers across different periods and

countries. In the pre-biofuel period, Soybean oil shocks had the most significant spillover effects on

the consumer confidence indexes of the US and China. However, in the post-biofuel period, Palm

oil emerged as the primary source of these spillovers. In the case of the UK and New Zealand,

Soybean oil displayed the highest post-biofuel spillovers, supplanting Rapeseed and Sunflower oils

which dominated the pre-biofuel period, respectively.

These findings vividly illustrate the profound alterations brought about by implementing biofuel
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policies. They underscore the considerable interplay between vegetable oil markets and broader

economic sentiment and how this relationship has been affected by shifts in energy policy. These

insights are essential for understanding how changes in the vegetable oil markets influence con-

sumer confidence across various countries, thereby providing a valuable context for evaluating the

implications of biofuel policies.

To deepen our analysis, we present the results of the instantaneous (one-month) responses of

consumer confidence indexes to vegetable oil price shocks using a structural VAR model. We

estimate structural coefficients as specified in equation (5) for the full sample and the pre- and

post-biofuel subsamples. We expect consumers to be highly sensitive to uncertainties related to

vegetable oil prices after the implementation of the biofuel policy, due to the increased demand

for vegetable oil by biofuel producers, which is associated with price and volatility increases. Let’s

denote the structural residuals of the VAR model by εt. They can be obtained from the reduced

form residuals ut by the following linear transformation:



uLPMO

uLSBO

uLRSO

uLSFO

uLCCI


=
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a11 0 0 0 0

a21 a22 0 0 0
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εLRSO
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
(5)

where uLPMO, uLSBO, uLRSO, and uLSFO are reduced-form shocks for Palm, Soybean, Rapeseed,

and Sunflower oil log price changes, respectively, and uLCCI represents the reduced-form shock

for changes in a given country log consumers’ confidence index. Parameters aij are the instanta-

neous effects of the structural shocks on the observed variables, or alternatively, they measure the

instantaneous responses of the observed variables to structural shocks. However, we are mostly in-

terested in capturing the behavior of consumers’ confidence indexes to structural shocks related to

vegetable oil price changes, i.e., the parameters a5j , j ∈ {1, 2, 3, 4}. In the conventional structural

VAR analysis, one has to first identify the shocks based on certain economic assumptions. The

standard approach is to impose restrictions on the matrix of structural coefficients to pin down the

economic shocks of interest. In our setup, we employ the approach of Blanchard and Quah (1988)

who propose an alternative identification method using restrictions on the long-run properties of
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the accumulated impulse responses.

The top panel of Table 7 displays estimates of the instantaneous response of country consumer

confidence indexes to price shocks in Palm, Soybean, Rapeseed, and Sunflower oils. Our analysis

covers the complete dataset, pre-biofuel policy, and post-biofuel policy eras. The results offer cap-

tivating insights into the role of biofuel policies in mediating the relationship between oil prices and

consumer sentiment. In the era before biofuel policy adoption, the analysis shows muted effects of

vegetable oil price shocks on national consumer confidence, except for a notable exception: Ger-

many’s consumer confidence demonstrates a subtle, yet significant, decline in response to Sunflower

oil price fluctuations. Such findings highlight the diverse reactions that manifest across different

scenarios. However, in the post-biofuel policy timeframe, vegetable oil price shifts significantly

influence consumer confidence in all the nations examined.12

The influence of the post-biofuel policy era is clear upon evaluating the complete dataset.

Excluding China, Germany, and South Africa, there is a uniform decline in consumer sentiment in

response to major vegetable oil price hikes, backed by statistically significant negative coefficients.

In contrast, China and Germany show a surge in consumer sentiment in response to these price

shocks, hinting at the intricate factors at play. South Africa also presents a nuanced scenario, with

Palm oil prices boosting consumer confidence and Sunflower oil doing the opposite. Factoring in

biofuel policy markers in the bottom panel of Table 7 confirms our critical observation: the advent

and adoption of biofuel policies not only influence but also magnify the repercussions of vegetable oil

price shocks on consumer confidence across all surveyed nations. Our study underscores the nuanced

dynamics between biofuel regulations, vegetable oil prices, and consumer sentiment, emphasizing

the need for policymakers and industry stakeholders to grasp these interrelations fully.

12Further analyses reveal nuanced differences in consumer responses to positive and negative vegetable oil price
shocks post-biofuel implementation. For a detailed breakdown, see Table A3 in the external appendix. China
and Germany’s cases are very instructive. Recall both countries display a positive relationship between consumer
sentiment and vegetable oil price shocks. However, in comparing the consumer reactions to vegetable oil price changes
in China and Germany, it’s evident that Chinese consumers tend to remain unaffected by positive shocks (increases in
vegetable oil prices) but are notably sensitive to negative shocks, particularly sharp decreases in vegetable oil prices,
which dampen their consumer sentiment. On the other hand, German consumers asymmetrically display sensitivity
to both positive and negative shocks associated with vegetable oil price fluctuations. They experience increased
consumer sentiment with price hikes and a more pronounced decrease with price drops. These distinctions may
stem from cultural, economic, and historical differences between the two countries, with Germany’s mature economy
possibly making its consumers more attuned to price changes, whereas China’s consumers may be less accustomed to
such fluctuations. The variability in response across nations underscores the importance of understanding the specific
contexts of each country when considering energy transition strategies. This further emphasizes the delicate balance
between pursuing sustainable energy and ensuring food security.
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7 Conclusion and policy implications

The transition towards biofuels since the early 2000s has led to a notable increase in the utilization

of food crops for energy production. This move was primarily motivated by global endeavors to

shield economies from oil price volatility and decrease dependence on external energy sources. The

present research thoroughly examines the economic dynamics of this shift in the global vegetable

oil markets, focusing on Palm, Soybean, Rapeseed, and Sunflower oils.

A significant observation from our study is the emergence of a long-term relationship among

vegetable oil prices in the wake of biofuel policy enactments. Such co-movement in prices holds pro-

found implications for future policy directions. As countries strategize their energy transitions, these

observed long-term trends in vegetable oil prices cannot be overlooked. Policymakers are encour-

aged to reflect on these patterns when framing future energy transition policies, particularly those

promoting biofuels. An all-encompassing strategy should consider the potential repercussions on

vegetable oil prices, global agricultural trends, and food security. Moreover, as the biofuel demand

burgeons, there’s a pressing need to simultaneously address the inevitable strain on agricultural

lands and advocate sustainable agricultural practices, which could help mitigate the environmental

ramifications associated with increased farming (Mahmudul et al.; 2022).

Another consequential finding pertains to household consumers’ heightened sensitivity to veg-

etable oil price fluctuations. While advocating for biofuel production, policymakers must judiciously

weigh the associated benefits against potential adverse effects on food prices, availability, and overall

food security. A potential pathway to alleviate some of these concerns might involve the promotion

of advanced biofuels that are not derived from food crops. Further diversifying into other renewable

energy sources like solar and wind could significantly offset the burgeoning pressure on global food

markets, ensuring a more harmonious energy-food balance (Das and Gundimeda; 2022).

Due to their increasing use as biofuel feedstocks, the surge in demand for vegetable oils poses

another challenge by putting additional strain on global supply chains. Policymakers and food

crop producers are thus urged to collaborate to fortify agricultural production capacities. Essential

interventions in this domain might encompass substantial R&D investments to bolster crop yields,

foster sustainable farming practices, and ensure agricultural systems’ resilience against potential

disruptions, such as the vagaries of climate change (Zahraee et al.; 2022).
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Biofuel policies have inadvertently injected a degree of volatility in vegetable oil markets. This

instability, our study finds, resonates across producers, consumers, and investors. Such market

fluctuations necessitate proactive policy interventions. Policymakers are thus prompted to devise

strategies to curb extreme price swings, an endeavor that could benefit from mechanisms like

strategic reserves or direct market interventions. A parallel strategy encouraging diverse biofuel

feedstocks can further ease the pressure on the vegetable oil market, ensuring its stability and

sustained growth (Cheng et al.; 2023).

Lastly, albeit environmentally motivated, the pivot towards biofuels has triggered unintended

consequences. A noticeable rise in food prices can be attributed to this shift, which, in turn, has

exacerbated hunger and malnutrition in regions already grappling with these challenges (Mart́ınez-

Jaramillo et al.; 2019). Policymakers must adopt a nuanced approach, tailoring interventions cater-

ing to country-specific challenges and vulnerabilities. Potential solutions could include stabilizing

prices, efforts to diversify energy sources, or enhancements to existing social safety nets. Constant

monitoring and evaluating biofuel policies’ effects on consumer behavior across different countries

are paramount, offering insights that can inform and refine future policy directions.

To encapsulate, biofuel policies, though environmentally well-intentioned, have inadvertently

introduced complexities in the agricultural sector and influenced consumer behaviors and senti-

ments. As the world progresses, striking a judicious balance between energy transitions and global

food security implications remains an imperative.
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A. Vegetable oil prices

B. Country consumer confidence indexes

Panel A plots logarithmic values of the four major vegetable oil prices from January 1990 to August 2021. Panel B
plots logarithmic values of the selected country consumer confidence indexes over the same period.

Figure 1: Evolution of major vegetable oil prices and country consumer confidence indexes
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A. Full sample

B. Post-biofuel subsample

Panel A plots the short-term equilibrium deviations major vegetable oil prices for the full sample (1990 to 2021)
analysis. Panel B displays similar plots for the post-biofuel subsample (2006 to 2021).

Figure 2: Evolution of short-term equilibrium deviations of major vegetable oil prices
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Table 3: Johansen cointegration test on vegetable oil price levels

Nb of CE(s) Eigenvalue Trace Statistic Critical Value Prob

Full sample

None * 0.0786 72.5253 54.6815 0.0001
At most 1 * 0.0631 41.8386 35.4582 0.0013
At most 2 0.0363 17.4121 19.9371 0.0254
At most 3 0.0094 3.5394 6.6349 0.0599

Pre-biofuel subsample

None 0.1139 40.7403 54.6815 0.1971
At most 1 0.0615 18.1328 35.4582 0.5563
At most 2 0.0329 6.2656 19.9371 0.6641
At most 3 0.0000 0.0026 6.6349 0.9572

Post-biofuel subsample

None * 0.1568 68.8045 54.6815 0.0002
At most 1 * 0.1061 37.5982 35.4582 0.0052
At most 2 0.0567 17.0687 19.9371 0.0287
At most 3 0.0343 6.3782 6.6349 0.0115

The table presents the Johansen cointegration test results for vegetable oil logarithmic price levels. The test is based
on the Trace statistic. The number of cointegration equations (null hypothesis), eigenvalue, test-statistic, critical
value, and probability value are shown for the full sample, the subsample before implementation of the biofuel policy,
and the post-biofuel subsample. “None”, “At most 1”, “At most 2”, and “At most 3” are the null hypotheses
specifying the number of cointegrating equations. The asterisk * denotes rejection of the null hypothesis.
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Table 4: VECM results of vegetable oils both for the post-biofuel subsample and for full sample

Full sample Post-biofuel subsample

Long-run coefficients

w1,t w2,t w1,t w2,t

Constant 0.195 −0.299 1.281 2.145∗∗∗

(0.238) (0.462) (1.140) (3.103)
∆LPMOt 1.000 0.000 1.000 0.000

(0.000) (0.000) (0.000) (0.000)
∆LSBOt 0.000 1.000 0.000 1.000

(0.000) (0.000) (0.000) (0.000)
∆LRSOt −0.928∗∗∗ 0.140 −0.331 −0.685∗∗∗

(4.532) (0.683) (1.471) (5.032)
∆LSFOt −0.049 −1.054∗∗∗ −0.793∗∗∗ −0.593∗∗∗

(0.247) (5.303) (5.061) (6.251)

Short-run coefficients

∆LPMOt ∆LSBOt ∆LRSOt ∆LSFOt ∆LPMOt ∆LSBOt ∆LRSOt ∆LSFOt

w1,t−1 −0.085∗∗∗ −0.013 0.011 −0.033 −0.058 0.091∗∗ 0.040 0.102∗

(4.049) (0.806) (0.688) (1.638) (1.076) (2.326) (1.211) (1.938)
w2,t−1 0.033∗ −0.002 0.010 0.092∗∗∗ 0.161∗ −0.096 0.061 0.042

(1.772) (0.112) (0.715) (4.992) (1.836) (1.504) (1.121) (0.485)
∆LPMOt−1 0.334∗∗∗ 0.039 0.066 −0.027 0.329∗∗∗ 0.063 −0.036 −0.035

(4.842) (0.740) (1.227) (0.401) (2.974) (0.780) (0.531) (0.321)
∆LSBOt−1 0.095 0.346∗∗∗ 0.405∗∗∗ 0.037 0.108 0.283∗∗ 0.230∗∗ 0.025

(0.979) (4.690) (5.377) (0.393) (0.632) (2.252) (2.172) (0.147)
∆LRSOt−1 −0.206∗∗∗ −0.082 −0.093∗ −0.052 −0.123 0.002 0.135 0.093

(3.000) (1.560) (1.743) (0.779) (0.820) (0.014) (1.459) (0.631)
∆LSFOt−1 −0.021 −0.027 0.011 0.394∗∗∗ −0.064 −0.062 −0.011 0.334∗∗∗

(0.393) (0.662) (0.258) (7.471) (0.925) (1.223) (0.265) (4.921)
Constant 0.003 0.002 0.002 0.002 0.004 0.004 0.001 0.004

(0.920) (0.770) (0.654) (0.532) (0.682) (0.932) (0.439) (0.724)

Adj. R2 0.126 0.101 0.174 0.176 0.135 0.160 0.240 0.257

The table presents VECM coefficient estimates for vegetable oil price dynamics for the full sample and the post-biofuel
subsample. The variables w1,t, and w2,t are the cointegrated residuals characterizing the long-run vegetable oil price
dynamics. The top panel shows coefficients of the long-run equilibrium dynamics (see equation (2)). The variables
∆LPMOt, ∆LSBOt, ∆LRSOt, and ∆LSFOt denote changes of Palm, Soybean, Rapeseed, and Sunflower oil prices,
respectively. The bottom panel shows coefficients of the short-run equilibrium dynamics (see equation (1)). The lag
selection is based on the Schwarz Information Criterium. In parentheses are the t-statistic absolute values, while the
R2 is adjusted. The asterisks ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively.
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Table 5: Spillovers among vegetable oils and between vegetable oils and consumer confidence indexes

A. Diebold and Yilmaz spillovers among vegetable oils B. Spillovers between vegetable oils and consumer confidence indexes

Full Sample Full Sample

LPMO LSBO LRSO LSFO From Others Country CCI LPMO LSBO LRSO LSFO From Others

Palm 63.57 13.09 21.35 1.99 36.43 USA 90.72 1.33 7.72 0.03 0.20 9.28
Soybean 39.48 59.63 0.50 0.38 40.37 China 94.42 1.71 1.38 2.42 0.07 5.58
Rapeseed 35.76 18.63 44.76 0.85 55.24 Australia 98.32 0.05 0.23 0.66 0.73 1.68
Sunflower 29.07 47.88 3.29 19.76 80.24 UK 94.09 0.61 2.92 1.64 0.74 5.91
To others 104.31 79.60 25.15 3.22 212.27 France 97.74 1.01 0.59 0.00 0.66 2.26
Incl. own 167.88 139.23 69.91 22.98 53.07 Germany 97.36 0.23 1.53 0.31 0.56 2.64

Japan 96.25 0.67 0.73 1.25 1.10 3.75
SA 98.56 0.64 0.32 0.17 0.30 1.44
NZ 97.69 0.12 0.35 1.35 0.49 2.31

Pre-biofuel subsample Pre-biofuel subsample

LPMO LSBO LRSO LSFO From Others Country CCI LPMO LSBO LRSO LSFO From Others

Palm 95.93 0.24 1.79 2.03 4.07 USA 92.76 0.49 6.28 0.28 0.18 7.24
Soybean 39.26 58.42 2.31 0.01 41.58 China 98.75 0.07 0.80 0.26 0.12 1.25
Rapeseed 13.33 7.39 79.22 0.06 20.78 Australia 99.01 0.06 0.01 0.05 0.87 0.99
Sunflower 20.99 12.47 5.02 61.52 38.48 UK 95.95 0.31 0.28 3.04 0.43 4.05
To others 73.57 20.11 9.12 2.10 104.91 France 98.78 0.73 0.07 0.20 0.22 1.22
Incl. own 169.51 78.53 88.34 63.62 26.23 Germany 98.01 0.08 0.12 0.52 1.27 1.99

Japan 96.78 0.83 0.61 0.73 1.05 3.22
SA 99.38 0.21 0.20 0.17 0.03 0.62
NZ 98.21 0.12 0.74 0.06 0.88 1.79

Post-biofuel subsample Post-biofuel subsample

LPMO LSBO LRSO LSFO From Others Country CCI LPMO LSBO LRSO LSFO From Others

Palm 87.89 4.65 4.78 2.68 12.11 USA 85.07 8.38 5.31 1.19 0.05 14.93
Soybean 80.08 11.78 0.59 7.55 88.22 China 93.29 3.29 1.88 0.06 1.47 6.71
Rapeseed 51.04 13.68 8.14 27.14 91.86 Australia 94.82 0.12 0.11 4.48 0.47 5.18
Sunflower 73.64 2.60 9.45 14.31 85.69 UK 90.28 0.59 6.08 2.65 0.41 9.72
To others 204.76 20.93 14.82 37.37 277.88 France 88.90 7.80 2.56 0.60 0.15 11.10
Incl. own 292.65 32.71 22.96 51.68 69.47 Germany 96.16 0.21 0.56 0.12 2.95 3.84

Japan 92.87 2.16 0.82 2.90 1.25 7.13
SA 94.76 0.45 0.71 0.17 3.92 5.24
NZ 90.17 4.26 4.60 0.53 0.44 9.83

Panel A presents results of the Diebold and Yilmaz spillovers among vegetable oils. The spillover coefficients of the
pre-biofuel subsample are computed using the forecast error variance decomposition from the standard VAR model as
presented in Table A1 while the spillover coefficients of the full sample and the post-biofuel subsample are computed
using the forecast error variance decomposition of the VECM as presented in Table 4. Panel B presents the results
of the Diebold and Yilmaz spillovers between vegetable oils and country consumer confidence indexes. The spillover
coefficients of the full sample and the subsamples are computed using the forecast error variance decomposition of the
SVAR model as presented in Table 7. All the forecast error variance decomposition are computed for a 100-month
horizon.
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Table 6: Asymmetric AR-EGARCH-DCC model estimation on vegetable oil cointegrated residuals

ϕ0 ϕ1 ω α γ β

Full sample

w1,t 0.026 0.937∗∗∗ −1.603∗∗ 0.462∗∗∗ −0.014 0.772∗∗∗

(0.631) (0.000) (0.010) (0.000) (0.806) (0.000)

w2,t 0.108∗∗ 0.929∗∗∗ −0.927∗∗∗ 0.569∗∗∗ −0.014 0.914∗∗∗

(0.031) (0.000) (0.001) (0.000) (0.804) (0.000)

Correlation θ1 θ2 θ3
Dynamics 0.265∗∗∗ 0.527∗∗∗ 0.108∗∗∗

(0.000) (0.000) (0.000)

Post-biofuel subsample

w1,t 0.046 0.892∗∗∗ −0.942∗∗ 0.474∗∗∗ 0.052 0.897∗∗∗

(0.303) (0.000) (0.018) (0.001) (0.372) (0.000)

w2,t 0.051 0.947∗∗∗ −1.416∗∗∗ 0.692∗∗∗ 0.126 0.860∗∗∗

(0.360) (0.000) (0.000) (0.000) (0.180) (0.000)

Correlation θ1 θ2 θ3
Dynamics 0.736∗∗∗ 0.084 −0.059∗∗

(0.000) (0.133) (0.016)

The table reports coefficient estimates of the asymmetric AR(1)-EGARCH(1,1)-DCC model on vegetable oil coin-
tegrated residuals as specified in equations (3) and (4). The variables w1,t, and w2,t are the cointegrated residuals
generated from equation (2). The parameters ϕ0 and ϕ1 are the constant term and the auto-regressive coefficient in
the AR(1) specification. The parameters ω, α, β, and γ are respectively the constant, ARCH, GARCH, and leverage
coefficients. The parameters θ1 and θ2 are the short-run and long-run volatility correlation persistence coefficients,
while θ3 captures the asymmetric effect in the condition correlation. The asterisks ***, **, and * denote significance
at the 1%, 5%, and 10% levels, respectively.
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Table 7: Structural VAR estimation on vegetable oil prices and country consumer confidence indexes

(a) Subsample analysis

Full sample Pre-biofuel subsample Post-biofuel subsample

LPMO LSBO LRSO LSFO LPMO LSBO LRSO LSFO LPMO LSBO LRSO LSFO

USA −0.001 −0.008∗∗∗ −0.010∗∗∗ −0.027∗∗∗ 0.001 0.003∗ −0.001 0.000 −0.014∗ −0.025∗∗∗ −0.027∗∗∗ −0.036∗∗∗

(0.876) (0.061) (0.007) (0.000) (0.484) (0.095) (0.520) (0.992) (0.080) (0.001) (0.000) (0.000)
China 0.006 0.017∗∗∗ 0.010∗∗∗ 0.022∗∗∗ 0.001 0.000 0.003∗ 0.001 0.027∗∗∗ 0.026∗∗∗ 0.023∗∗∗ 0.027∗∗∗

(0.204) (0.000) (0.004) (0.000) (0.749) (0.951) (0.094) (0.620) (0.001) (0.001) (0.000) (0.004)
Australia 0.005 0.002 −0.002 −0.018∗∗∗ 0.001 0.001 0.000 −0.002 0.011 0.006 −0.008 −0.022∗

(0.279) (0.536) (0.528) (0.000) (0.676) (0.668) (0.924) (0.326) (0.156) (0.392) (0.239) (0.018)
UK 0.000 −0.004 −0.009∗∗∗ −0.027∗∗∗ −0.002 0.001 −0.002 0.001 0.014∗ 0.013∗ −0.002 −0.031∗∗∗

(0.921) (0.355) (0.010) (0.000) (0.335) (0.336) (0.224) (0.364) (0.078) (0.088) (0.811) (0.001)
France 0.002 −0.002 −0.003 −0.021∗∗∗ −0.001 −0.002 0.001 −0.002 −0.002 −0.008 −0.015∗∗ −0.032∗∗∗

(0.601) (0.595) (0.391) (0.000) (0.626) (0.280) (0.696) (0.292) (0.817) (0.275) (0.021) (0.001)
Germany 0.023∗∗∗ 0.019∗∗∗ 0.011∗∗∗ −0.007 0.001 −0.001 −0.001 −0.007∗∗∗ 0.042∗∗∗ 0.039∗∗∗ 0.025∗∗∗ 0.008

(0.000) (0.000) (0.002) (0.169) (0.770) (0.710) (0.623) (0.000) (0.000) (0.000) (0.000) (0.386)
Japan −0.002 −0.004 −0.011∗∗∗ −0.028∗∗∗ 0.002 0.001 0.003 0.003∗ 0.000 −0.003 −0.016∗∗ −0.034∗∗∗

(0.577) (0.352) (0.002) (0.000) (0.385) (0.725) (0.136) (0.050) (0.979) (0.660) (0.012) (0.000)
SA 0.019∗∗∗ 0.005 −0.003 −0.012∗∗ 0.003 0.001 −0.003 0.000 0.033∗∗∗ 0.024∗∗∗ 0.012∗ −0.014

(0.000) (0.204) (0.454) (0.018) (0.142) (0.682) (0.152) (0.932) (0.000) (0.001) (0.068) (0.143)
NZ −0.016∗∗∗ −0.009∗∗ −0.009∗∗ −0.010∗∗ −0.006 −0.001 −0.001 −0.002 −0.026∗∗∗ −0.033∗∗∗ −0.031∗∗∗ −0.049∗∗∗

(0.000) (0.020) (0.011) (0.044) (0.002) (0.505) (0.472) (0.163) (0.001) (0.000) (0.000) (0.000)

(b) Full sample analysis considering country biofuel policy dummies

LPMO LSBO LRSO LSFO Dit× LPMO Dit× LSBO Dit× LRSO Dit× LSFO

USA −0.005 −0.012∗∗∗ −0.013∗∗∗ −0.033∗∗∗ −0.007∗∗ −0.009∗∗∗ −0.012∗∗∗ −0.017∗∗∗

(0.302) (0.003) (0.000) (0.000) (0.011) (0.000) (0.000) (0.000)
China 0.009∗ 0.020∗∗∗ 0.013∗∗∗ 0.023∗∗∗ 0.012∗∗∗ 0.012∗∗∗ 0.012∗∗∗ 0.016∗∗∗

(0.052) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Australia 0.003 −0.001 −0.005 −0.023∗∗∗ −0.006∗∗ −0.006∗∗ −0.008∗∗∗ −0.015∗∗∗

(0.526) (0.835) (0.175) (0.000) (0.041) (0.013) (0.000) (0.000)
UK 0.000 −0.006 −0.012∗∗∗ −0.029∗∗∗ −0.004 −0.007∗∗∗ −0.013∗∗∗ −0.021∗∗∗

(0.988) (0.180) (0.001) (0.000) (0.160) (0.006) (0.000) (0.000)
France −0.004 −0.007∗ −0.009∗∗ −0.024∗∗∗ −0.013∗∗∗ −0.013∗∗∗ −0.012∗∗∗ −0.019∗∗∗

(0.374) (0.067) (0.012) (0.000) (0.000) (0.000) (0.000) (0.000)
Germany 0.019∗∗∗ 0.016∗∗∗ 0.008∗∗ −0.008 0.004 0.005∗∗ 0.005∗ 0.001

(0.000) (0.000) (0.028) (0.141) (0.210) (0.033) (0.052) (0.732)
Japan −0.004 −0.008∗ −0.015∗∗∗ −0.033∗∗∗ −0.005∗ −0.005∗∗ −0.013∗∗∗ −0.019∗∗∗

(0.419) (0.051) (0.000) (0.000) (0.079) (0.029) (0.000) (0.000)
SA 0.019∗∗∗ 0.005 −0.003 −0.013∗∗∗ 0.007∗∗ 0.003 −0.002 −0.012∗∗∗

(0.000) (0.252) (0.491) (0.009) (0.014) (0.226) (0.322) (0.000)
NZ −0.022∗∗∗ −0.015∗∗∗ −0.016∗∗∗ −0.018∗∗∗ −0.010∗∗∗ −0.016∗∗∗ −0.017∗∗∗ −0.026∗∗∗

(0.000) (0.000) (0.000) (0.001) (0.000) (0.000) (0.000) (0.000)

The top panel of the table displays the results of the structural VAR model estimation on vegetable oils and consumer
confidence indexes, as specified in equation (5), for the full sample and the pre- and post-biofuel subsamples. The
reported parameter estimates measure the instantaneous response of country consumer confidence indexes to vegetable
oil price shocks. The values in parentheses are the corresponding p-values. The lag length is determined by the Schwarz
information criterium. The asterisks ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively.
The bottom panel reports the results considering a dummy variable, Dit = 1 if country i has a biofuel policy in effect
at time t, and 0 otherwise.
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EXTERNAL APPENDIX

for

“Biofuel Policies and Their Ripple Effects: An Analysis of Vegetable Oil Price

Dynamics and Global Consumer Responses”

This supplemental appendix provides additional tables that complement the analysis presented

in the main text including using alternative empirical approaches for robustness checks.

Table A1: Standard VAR model estimation on vegetable oil prices for the pre-biofuel subsample

∆LPMOt ∆LSBOt ∆LRSOt ∆LSFOt

∆LPMOt−1 0.227∗∗ −0.033 0.134∗ −0.147∗∗

(2.474) (0.473) (1.675) (1.995)

∆LSBOt−1 −0.087 0.311∗∗∗ 0.459∗∗∗ −0.009
(0.679) (3.202) (4.090) (0.083)

∆LRSOt−1 −0.206∗∗∗ −0.141∗∗ −0.170∗∗ −0.103
(2.649) (2.406) (2.503) (1.639)

∆LSFOt−1 0.204∗ 0.010 0.013 0.392∗∗∗

(1.916) (0.119) (0.144) (4.576)

Constant 0.002 0.001 0.003 0.003
(0.419) (0.147) (0.691) (0.690)

Adj. R2 0.075 0.076 0.203 0.097

The table reports results of the standard VAR model estimation on vegetable oils for the subsample before the im-
plementation of the biofuel policy. The variables ∆LPMO, ∆LSBO, ∆LRSO, and ∆LSFO represent Palm, Soybean,
Rapeseed, and Sunflower oil price changes, respectively. The coefficient C denotes the constant term in the VAR
equations. The lag length of 2 is determined by the Schwarz information criterium. The values in parenthesis repre-
sent the standard errors. The asterisks ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively.
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Table A2: Descriptive statistics and correlations of cointegrating residuals

Full Sample Post-biofuel subsample

w1,t Prob w2,t Prob w1,t Prob w2,t Prob

A. Descriptive Statistics

Mean 0.000 0.000 0.000 0.000
Std 0.186 0.207 0.205 0.120
5% −0.356 −0.335 −0.293 −0.224
Median 0.034 0.007 0.122 0.717
95% 0.270 0.253 0.417 0.239
Skew −0.567 0.144 −0.258 −0.131
Kurt −0.211 4.309 0.349 0.288
Min −0.578 −0.670 −0.824 −0.429
Max 0.362 1.034 0.709 0.459

B. Correlations

Palm −0.108∗∗ 0.036 0.033 0.521 0.189∗∗ 0.010 0.246∗∗∗ 0.001
Soybean 0.019 0.717 0.025 0.622 0.297∗∗∗ 0.000 0.205∗∗∗ 0.005
Rapeseed 0.131∗∗ 0.011 0.107∗∗ 0.037 0.423∗∗∗ 0.000 0.389∗∗∗ 0.000
Sunflower 0.044 0.391 0.203∗∗∗ 0.000 0.386∗∗∗ 0.000 0.275∗∗∗ 0.000
w1,t 1.000 0.407∗∗∗ 0.000 1.000 0.846∗∗∗ 0.000

Panel A reports results of the descriptive statistics of cointegrating residuals while Panel B presents their correlations
with vegetable oil prices. The variables w1,t and w2,t are the cointegrated residuals generated from equation (2). The
asterisks ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively.
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Table A3: Structural VAR results: disentangling the effects of positive and negative shocks

FS Positive FS Negative

LPMO LSBO LRSO LSFO LPMO LSBO LRSO LSFO

USA −0.004 −0.004 −0.005∗∗ −0.015∗∗∗ 0.002 −0.004∗ −0.006∗∗∗ −0.013∗∗∗

(0.135) (0.105) (0.028) (0.000) (0.552) (0.099) (0.009) (0.000)
China −0.002 0.004 0.002 0.000 0.007∗∗ 0.012∗∗∗ 0.007∗∗∗ 0.021∗∗∗

(0.480) (0.104) (0.353) (0.925) (0.019) (0.000) (0.002) (0.000)
Australia 0.009∗∗∗ 0.006∗∗∗ 0.000 −0.009∗∗ −0.005∗ −0.003 −0.002 −0.008∗∗∗

(0.000) (0.009) (0.971) (0.018) (0.081) (0.162) (0.429) (0.005)
UK −0.002 −0.005∗∗ −0.011∗∗∗ −0.021∗∗∗ 0.003 0.002 0.002 −0.006∗∗

(0.309) (0.026) (0.000) (0.000) (0.313) (0.413) (0.363) (0.023)
France 0.000 0.000 −0.002 −0.015∗∗∗ 0.002 −0.002 0.000 −0.007∗∗

(0.948) (0.993) (0.302) (0.000) (0.493) (0.379) (0.927) (0.014)
Germany 0.005∗ 0.008∗∗∗ −0.002 −0.004 0.021∗∗∗ 0.011∗∗∗ 0.014∗∗∗ −0.002

(0.058) (0.001) (0.313) (0.303) (0.000) (0.000) (0.000) (0.547)
Japan 0.000 0.002 −0.007∗∗∗ −0.010∗∗ −0.004 −0.007∗∗ −0.005∗∗ −0.019∗∗∗

(0.966) (0.312) (0.001) (0.012) (0.165) (0.006) (0.042) (0.000)
SA 0.006∗ 0.005∗ −0.003 −0.009∗∗ 0.015∗∗∗ 0.003 0.002 0.001

(0.015) (0.055) (0.138) (0.015) (0.000) (0.248) (0.442) (0.796)
NZ −0.006∗∗ −0.001 −0.002 −0.004 −0.010∗∗∗ −0.008∗∗∗ −0.009∗∗∗ −0.006∗∗

(0.023) (0.680) (0.473) (0.226) (0.001) (0.001) (0.000) (0.032)

PBS Positive PBS Negative

LPMO LSBO LRSO LSFO LPMO LSBO LRSO LSFO

USA 0.015∗∗∗ 0.010∗∗∗ −0.001 −0.037∗∗∗ 0.021∗∗∗ 0.009∗ 0.006∗∗ −0.002
(0.000) (0.003) (0.796) (0.000) (0.000) (0.008) (0.050) (0.626)

China 0.003 −0.002 −0.007∗∗ −0.008 0.031∗∗∗ 0.028∗∗∗ 0.028∗∗∗ 0.027∗∗∗

(0.402) (0.514) (0.019) (0.292) (0.000) (0.000) (0.000) (0.000)
Australia 0.020∗∗∗ 0.008∗∗ −0.002 −0.023∗∗∗ −0.007 −0.006 −0.001 −0.013∗∗∗

(0.000) (0.015) (0.465) (0.002) (0.199) (0.107) (0.861) (0.004)
UK 0.009∗∗ 0.018∗∗∗ −0.002 −0.036∗∗∗ 0.014∗∗∗ 0.006 0.009∗∗∗ −0.014∗∗∗

(0.028) (0.000) (0.582) (0.000) (0.007) (0.119) (0.006) (0.004)
France 0.015∗∗∗ 0.015∗∗∗ 0.000 −0.020∗∗ 0.010∗ 0.005 0.004 −0.015∗∗∗

(0.000) (0.000) (0.978) (0.011) (0.066) (0.228) (0.199) (0.001)
Germany 0.028∗∗∗ 0.021∗∗∗ 0.006∗∗ −0.006 0.039∗∗∗ 0.032∗∗∗ 0.027∗∗∗ 0.002

(0.000) (0.000) (0.037) (0.455) (0.000) (0.000) (0.000) (0.668)
Japan 0.023∗∗∗ 0.010∗∗ 0.001 −0.014∗ 0.020∗∗∗ 0.013∗∗∗ 0.013∗∗∗ −0.008∗

(0.000) (0.004) (0.730) (0.072) (0.000) (0.001) (0.000) (0.097)
SA 0.015∗∗∗ 0.002 −0.009∗∗∗ −0.047∗∗∗ 0.018∗∗∗ 0.002 −0.006∗ −0.004

(0.000) (0.515) (0.002) (0.000) (0.000) (0.612) (0.056) (0.360)
NZ −0.007∗ −0.009∗∗∗ −0.014∗∗∗ −0.063∗∗∗ −0.037∗∗∗ −0.022∗∗∗ −0.013∗∗∗ −0.003

(0.099) (0.007) (0.000) (0.000) (0.000) (0.000) (0.000) (0.454)

This table reports the results of the structural VAR model for the full sample (FS) and post-biofuel subsample (PBS)
as specified in equation (5) considering positive and negative shocks. The Schwarz information criteria determine the
lag length. The values between parenthesis represent the p-values. The asterisks ***, **, and * denote significance
at the 1%, 5%, and 10% levels, respectively.
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